• Title/Summary/Keyword: Glove Valve

Search Result 11, Processing Time 0.02 seconds

Comparison of Loss Coefficient using 1-inch Ball and Glove Valve Opening Ratio (1인치 볼 밸브 및 글로브 밸브에 대한 개도율에 따른 손실계수(k) 비교에 관한 연구)

  • Kang, Chang-Won;Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.63-69
    • /
    • 2021
  • This study aims to determine the flow characteristics of a one-inch small ball valve and glove valve used in industrial plants. The flow was changed through an experimental equipment, and the internal flow characteristics of the valves were compared. Considering the pressure drop, the decrease in the slope of the ball valve based on the degree of the valve opening was relatively greater than that of the glove valve; further, the slope of the glove valve was gentle while the pressure drop was high. The flow velocity of the ball valve remains consistent after the valve was opened by 70%, whereas the flow velocity of the glove valve constantly increased. The valve loss factor of the ball valve was relatively low compared with that of the glove valve. When the valve was opened by 20%, which is the beginning stage of the valve opening, the valve loss factor of the ball valve was high and gradually became low. This is a structural problem of the ball valve, and the loss factor is significant because the flow path installed at the ball valve has a considerably small area. However, the overall loss factor of glove valve is high because it has a complicated structure of flow path.

A Study on the Improvement of Flow Characteristics of the Glove Valve for Compressible Fluid (압축성 유체용 글로브 밸브의 유량특성 향상에 관한 연구)

  • Bae, Ji Won;Chung, Woo Young;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.32-37
    • /
    • 2019
  • Glove valves are used for various purposes in the process control field because such valves enable easy control of temperature and pressure. However, such valves are associated with significant loss of pressure and also have the disadvantage of complicating the shape of the cage or plug to facilitate linear flow rate change. In this paper, the shape of the plug, one of the valve flow control elements, was designed to improve the flow characteristics of the glove valve, and then CFD analysis was performed using compressible fluid. The numerical analysis results of the glove valve were analyzed according to the opening ratio and the pressure ratio of the valve. From these results, it was found that the proper notch on the side of the plug contributed to reducing the energy loss of the fluid through the valve and improving the linearity of the valve.

Development and Performance Test on the 1-Inch Glove Valve for the LNG Piping System (LNG 배관 시스템용 1인치 글로브 밸브 개발 및 성능실험)

  • Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • This study describes the development of a 1-inch cryogenic glove valve for an LNG pumping system and localization development achieved through the performance test. The cryogenic valve used in the LNG pumping system plays an important role in maintaining a flow rate by LNG transportation. This trial manufactured goods, which was achieved through reverse engineering and developing the assembly process. The result of the leak test satisfied the internal pressure condition using the 78-bar normal temperature test and maintained the anti-leakage condition. Also, the result of the cryogenic leak test (BS 6364: low temperature test procedure) maintained anti-leakage at -196 and 52 bar, which satisfied the test standards.

Valve Seat Design for Full Contact Effect Using Grey Relational Analysis (회색 관계 분석법을 이용한 누수 방지용 밸브 시트 설계)

  • Lee, Jung-Hee;Kang, Gyeong-Ah;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.17-22
    • /
    • 2018
  • A glove valve regulates the flow in a pipeline as a kind of control valve. However, when the disc and seat contact, the valve structure can be distorted and flow can leak due to the elongation of the valve material under high pressure. The surface texture is not good enough to seal the contact surface (in practice) because the lapping process is usually done manually. Furthermore, assembly performance is analyzed by structural analysis. Compared with a standard seat, the newly designed seat had a smaller radial deformation and a larger longitudinal deformation. Therefore, the newly designed seat can maintain a tight and uniform contact with the disc with a reduced radial deformation and an expanded available seal area with an increased longitudinal deformation. The seal performance of the glove valve has been improved in a cost-effective manner.

Study on Evaluation of the Leak Rate for Steam Valve in Power Plant (발전용 증기밸브 누설량 평가에 관한 연구)

  • Lee, S.G.;Park, J.H.;Yoo, G.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.45-50
    • /
    • 2007
  • Acoustic emission technology is applied to diagnosis the internal leak and operating conditions of the major valves at nuclear power plants. The purpose of this study is to verify availability of the acoustic emission as in-situ diagnosis method. In this study, acoustic emission tests are performed when the pressurized high temperature steam flowed through gate valve(1st stage reheater valve) and glove valve(main steam dump valve) on the normal size of 4 and 8". The valve internal leak diagnosis system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, signal level analysis and RMS(root mean square) analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Numerical Analysis of the 3-D Flow Field in a Globe Valve Trim under High Pressure Drop (고차압 제어용 글로브 밸브 트림 내부의 3차원 유동장 해석)

  • Yoon, Joon-Yong;Byun, Sung-Joon;Yang, Jae-Mo;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.14-20
    • /
    • 2001
  • Numerical analysis of the three dimensional turbulent flow field in a complex valve trim is carried out to confirm the possibility whether this simulation tool can be used as a design tool or not. The simulation of the incompressible flow in a glove valve is performed by using the commercial code. CFD-ACEA utilizes the finite volume approach as a discretization scheme, and the pressure-velocity coupling is made from SIMPLEC algorithm in it. Four flow cases of the control valve are investigated, and the valve flow coefficient for each case is compared with the experimental data. Simulation results show a good agreement with the experiments, and it is observed that the cavitation model improves the simulation results.

  • PDF

Study on the Real-Time Leak Monitoring Technique for Power Plant Valves (발전용 밸브누설 실시간 감시기술 연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

A Study on the Flow Characteristics inside a Glove Valve for Ships (선박용 글로브 밸브의 유동특성에 관한 연구)

  • Bae, Ki-Hwa;Park, Jea-Hyoun;Kang, Sang-Mo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.110-118
    • /
    • 2008
  • It is essential for the valid design of a marine flow-control valve to exactly know its flow characteristics. The present study has numerically investigated the flow characteristics inside a marine throttle-type globe valve using a kind of commercial CFD code, CFX10.0, with an adoption of the SST (Shear-Stress Transport) turbulence model. To validate the numerical approach, the flow coefficients are compared with the experimental ones. Results show that the globe valve is effective in the control of flow rate according to the opening ratio in case of the forward-direction flow, whereas it is effective in the flow shutoff in case of the reverse-direction flow. Around the inlet of the valve, a recirculation region is formed due to the blunt body shape, the turbulence intensity becomes strengthened and then an abrupt pressure loss occurs.

The Evaluation of the Structural Integrity of Bellows Globe Valve for Nuclear Power (원자력 발전소용 벨로우즈 글로브 밸브에 대한 구조 건전성 평가)

  • Chung, Chul-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1034-1039
    • /
    • 2006
  • The purpose of this paper is to evaluate the structural integrity of the Class 1500 Bellows Seal 3 inch globe valve classified as seismic category IIA. The finite element analysis program, ANSYS, Version 10.0, is used to perform both a modal frequency analysis and an equivalent static stress analysis of the subject valve modeling. The modal frequency analysis results show the fundamental natural frequency is greater than 33 Hz. Therefore the equivalent static stress analysis is performed using the seismic acceleration values. The stresses resulted from various loadings and their combinations are evaluated based on the structural acceptance criteria of the ASME Code. The stresses in the glove valve due to the seismic loadings are within the allowable limits. It is concluded that the globe valve structure is maintaining the structural integrity fur the seismic loading conditions.

  • PDF

Acoustic Valve Leak Diagnosis and Monitoring System for Power Plant Valves (발전용 밸브누설 음향 진단 및 감시시스템)

  • Lee, Sang-Guk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.425-430
    • /
    • 2008
  • To verify the system performance of portable AE leak diagnosis system which can measure with moving conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured during operation on total 11 valves of the secondary system in nuclear power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, type of valve, pressure difference, valve size and fluid. The results of this field study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve. The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18 ". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF