• Title/Summary/Keyword: Global warming

Search Result 2,160, Processing Time 0.027 seconds

Global Warming and Trends of Typhoon Variation (지구 온난화와 태풍의 변화 경향)

  • Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.453-458
    • /
    • 2010
  • This paper studies relationship between global warming and trends of typhoon variation by using the meteorological long-term data. The results show that yearly mean typhoon's occurrence numbers decrease and maximum wind speeds strengthen gradually. These results are in accord with most of simulated results. While the normal course of typhoon is increased, the westward course of that is decreased. Typhoon trajectories show that the ratios of normal course 6 : westward course 3 : abnormal course 1 in the last 10 years. Among typhoons which affect to the Korea ones pass through the southern coast of Korea are the most. The numbers of typhoon pass through the western coast of Korea are decreased and those pass through the eastern coast of Korea show increasing trend lately. The notable point in relation to the global warming is that typhoon intensity is strengthened gradually. Watch and counterplan in the viewpoint of prevention to the meteorological disasters are required.

Effect of SRI Water Management on the Reduction of Greenhouse-gas Emissions and Irrigation Water Supply in Paddy (논에서 SRI 물관리 방법에 의한 온실가스와 관개용수 저감효과 분석)

  • Seo, Jiyeon;Park, Baekyung;Park, Woonji;Lee, Suin;Choi, Yonghun;Shin, Minhwan;Choi, Joongdae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.79-87
    • /
    • 2018
  • Water management impacts both methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from rice paddy fields. Although irrigation is one of the most important methods for reducing $CH_4$ emission in rice production systems it can also $N_2O$ emissions and reduce crop yields. A feasibility study on the system of rice intensification (SRI) methods with respect to irrigation requirements, greenhouse gas (GHG) emissions was conducted for either 2 or 3 years depending on the treatment in Korea. The SRI methods (i.e. SRI and midsummer drainage (MD) with conventional practice (CT)) reduced the irrigation requirement by 49.0 and 22.0 %, respectively. Global warming contribution of GHG to different depending on the type of GHG. Therefore, the emission of $CH_4$ and $N_2O$ shall be converted to Global Warming Potential (GWP). The GHG emission from the conventional practice with midsummer drainage (MD) and the SRI plots, in GWP were reduced by 49.1 and 77.1 %, respectively. Application of SRI water management method could help to improve Korea's water resources and could thus contribute to mitigation of the negative effects of global warming.

Analysis of Pest Prevention Packaging Cases in Preparation for Consumer Complaints Caused by Global Warming in the Product Distribution Process: Focusing on Poly Bag Packaging for Hygiene Products in Company A

  • Jung, Sung-Tae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • The present study was conducted to accomplish management efficiency by preparing preemptive measures for consumer dissatisfaction and overcome risks caused by Global Warming through studies of model cases in packaging. Through this study, we made it possible to find a way for companies to prepare for Global warming and consumer dissatisfaction. By contributing to eco-friendly packaging, we are trying to preemptively respond to recent major issues through packaging. Through this experiment, we tried to measure the degree of penetration of Plodia interpunctella H. larva into the insect repellent film produced by printing Ink containing a natural repellent. The control experiment was conducted with an untreated LDPE film to which no insect repellent was applied. The numbers decreased from 17 to 7 when the film was processed with repellent to show experimental results verifying effects of repellent by decrease in 10 (58.8% Decrease). Such results show that it is safe when the film is unfolded but in the case where the film is folded, the Plodia interpunctella H. punches through the film to lead to consumer dissatisfaction and it suggests that this can bring on risks to corporate management. Considering that most of the film is folded in the case of PE bag packaging, the direction which the corporations should take in terms of preparing for climate change countermeasures and consumer dissatisfaction has been clarified. Due to it receiving satisfactory results in safety rest results for printing film applied with pest repellent as well as the Quality analysis to test repellent contents of repellent film, it is certain that the importance of repellent method in packaging will increase in preparing for consumer dissatisfaction and actions against climate change henceforth.

Characterization of Tree Composition using Images from SENTINEL-2: A Case Study with Semiyang Oreum (SENTINEL-2 위성영상을 이용한 조림 특성 조사: 세미양오름를 통한 사례 연구)

  • Chung, Yong Suk;Yoon, Seong Uk;Heo, Seong;Kim, Yoon Seok;Ahn, Jinhyun;Han, Gyung Deok
    • Journal of Environmental Science International
    • /
    • v.31 no.9
    • /
    • pp.735-741
    • /
    • 2022
  • Global warming affects forests and their ecology. Diversity in the forest is a buffer that reduces the damage due to global warming. Mixed forests are ecologically more valuable as versatile habitats and are effective in preventing landslides. In Korea, most forests were created by simple afforestation with trees of evergreen species. Typically, evergreen trees are shallow-rooted, and deciduous trees are deep-rooted. Mixed forest tree roots grip the soil effectively, which reduces the occurrence of landslides. Therefore, improving the distribution of tree types is essential to reduce damage due to global warming. For this improvement, the investigation of tree types of the forest is needed. However, determining the tree type distribution of forests that are spread over wide areas is labor-intensive and time-consuming. This study suggests effective methods for determining the distribution of tree types in a forest that is spread across a relatively wide area. Using normalized difference vegetation index and RGB images from unmanned aerial vehicles, each evergreen and deciduous tree, and grassland area can be distinguished. The distinguished image determines the distribution of tree type. This method is effective compared to directly determining the tree type distribution in the forest by the use of manpower. The data from these methods could be applied to plan a mixed forest or to prepare for future damage due to global warming.

Long-term Trends of Daily Maximum and Minimum Temperatures for the Major Cities of South Korea and their Implications on Human Health (한국의 주요 대도시에 대한 일 최고 및 최저 기온의 장기변동 경향과 건강에 미치는 영향 전망)

  • Choi, Byoung-Cheol;Kim, Jiyoung;Lee, Dae-Geun;Kysely, Jan
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.171-183
    • /
    • 2007
  • Trends of daily maximum and minimum temperatures in major cities of South Korea (Seoul, Busan, Incheon, Daegu, and Ulsan) during the past 40 years (1961-2000) were investigated. Temperature records for the Chupungryeong station were compared with those of the large cities because of the rural environment of the station. There were distinct warming trends at all stations, although the warming rates depend on each station's local climate and environment. The warming rates in Korea are much greater than the global warming trends, by a factor of 3 to 4. The most increasing rate in daily maximum temperature was at Busan with $0.43^{\circ}C$ per decade, the most increasing rate in daily minimum temperature was at Daegu with $0.44^{\circ}C$ per decade. In general, the warming trends of the cities were most pronounced in winter season with an increasing rate of $0.5^{\circ}C$/decade at least. Diurnal temperature range shows positive or negative trends according to the regional climate and environmental change. The frequency distribution of the daily temperatures for the past 40 years at Seoul and Chupungryeong shows that there have been reductions in cold day frequencies at both stations. The results imply that the impacts on human health might be positive in winter and adverse in summer if the regional warming scenario by the current regional climate model reflects future climate change in Korea.

Determining the Warming Effect Induced by Photovoltaic Power Plants in neighboring Region Using an Analytical Model (해석학적 모델을 이용한 태양광 발전소 주변 지역의 기온 상승 추정 연구)

  • Kim, Hae-Dong;Huh, Kyong-Chun;Kim, Ji-Hye
    • Journal of Environmental Science International
    • /
    • v.27 no.3
    • /
    • pp.227-231
    • /
    • 2018
  • We studied the warming effect induced by Photovoltaic(PV) power plants in rural areas during summer daytime using a simple analytical urban meteorological model. This analysis was based on observed meteorological elements and the capacity of the PV power plant was 10 MWp. The major axis length of the PV power plant was assumed to be 1km. Data of the necessary meteorological elements were obtained from a special meteorological observation campaign established for a over a PV power plant. We assumed that the wind flowed along the major axis of the PV power plant(1 km). As a result, the air temperature on the downwind side of the PV power plant was estimated to invrease by about $0.47^{\circ}C$.

Projection of climate change effects on the potential distribution of Abeliophyllum distichum in Korea (기후변화에 따른 우리나라 미선나무의 분포변화 예측)

  • Lee, Sang-Hyuk;Choi, Jae-Yong;Lee, You-Mi
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.219-225
    • /
    • 2011
  • Changes in biota, species distribution range shift and catastrophic climate influence due to recent global warming have been observed during the last century. Since global warming affects various sectors, such as agriculture and vegetation, it is important to predict more accurate impact of future climate change. The purpose of this study is to examine the observed distribution of Abeliophyllum distichum in the Korean peninsula. For this purpose, two period (present and future) climate data were used. Mean data between 1950 and 2000, were used as the present value and the year 2050 and 2080 data from A1B senario in IPCC SRES were used for the future value. Potential habitation is analyzed by MaxEnt(Maximum Entropy model), and Abeliophyllum distichum's coordinates data were used as a dependent variable and independent variables are composed of environmental data such as BioClim, altitude, aspect and slope. The result of six types GCM mean calculation, the potential habitability decreased by 40-60% of the average existing distribution. The methodogies and results of this research can be applicable to the climate changing adaptation stratiegies for the biodiversity conservation.

Preservice Elementary Teachers' Understandings of the Key Concepts related to the Greenhouse Effect (초등 예비교사들의 온실효과 관련 핵심 개념들에 대한 이해)

  • Jang, Myoung-Duk
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.1
    • /
    • pp.15-31
    • /
    • 2015
  • The purpose of this study was to investigate elementary student teachers' conceptions about the mechanism of the greenhouse effect, the greenhouse gases, the global warming, and their learning experiences of the greenhouse effect and the global warming. Participants were 82 student teachers in their second year of studies (science education: n=28, not science education: n=27) and in their fourth year of studies (science education: n=27). The open-ended questionnaire was used to examine the teachers' spontaneous ideas depicted by their drawings and/or writings. The results of this study are as follows: First, the student teachers' scientific response rate about key concepts related to the mechanism of the greenhouse effect was low (6.1%~28.0%); Second, although there are various greenhouse gases, it was only carbon dioxide that the student teacher's response rate was more than 80%; Third, only 17.1% of the student teachers clearly distinguished the greenhouse effect and the global warming; Fourth, there was a tendency that the student teacher group in the fourth year of studies and science education showed higher scientific response rate about the concepts than the other two groups.

Changes in the Tsushima Warm Current and the Impact under a Global Warming Scenario in Coupled Climate Models (기후모델에 나타난 미래기후에서 쓰시마난류의 변화와 그 영향)

  • Choi, A-Ra;Park, Young-Gyu;Choi, Hui Jin
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.127-134
    • /
    • 2013
  • In this study we investigated changes in the Tsushima Warm Current (TWC) under the global warming scenario RCP 4.5 by analysing the results from the World Climate Research Program's (WCRP) Coupled Model Intercomparison Project Phase 5 (CMIP5). Among the four models that had been employed to analyse the Tsushima Warm Current during the 20th Century, in the CSIRO-Mk3.6.0 and HadGEM2-CC models the transports of the Tsushima Warm Current were 2.8 Sv and 2.1 Sv, respectively, and comparable to observed transport, which is between 2.4 and 2.77 Sv. In the other two models the transports were much greater or smaller than the observed estimates. Using the two models that properly reproduced the transport of the Tsushima Warm Current we investigated the response of the current under the global warming scenario. In both models the volume transports and the temperature were greater in the future climate scenario. Warm advection into the East Sea was intensified to raise the temperature and consequently the heat loss to the air.

Environmental Impact Evaluation for Glass Bottle Recycle using Life Cycle Assessment (LCA를 이용한 유리병 재활용의 환경영향 평가)

  • Baek, Seung-Hyuk;Kim, Hyung-Jin;Kwon, Young-Shik
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1067-1074
    • /
    • 2014
  • Life Cycle Assessment(LCA) has been carried out to evaluate the environmental impacts of glass bottle recycle. The LCA consists of four stages such as Goal and Scope Definition, Life Cycle Inventory(LCI) Analysis, Life Cycle Impact Assessment(LCIA), and Interpretation. The LCI analysis showed that the major input materials were water, materials, sand, and crude oil, whereas the major output ones were wastewater, $CO_2$, and non-hazardous wastes. The LCIA was conducted for the six impact categories including 'Abiotic Resource Depletion', 'Acidification', 'Eutrophication', 'Global Warming', 'Ozone Depletion', and 'Photochemical Oxidant Creation'. As for Abiotic Resource Depletion, Acidification, and Photochemical Oxidant Creation, Bunker fuel oil C and LNG were major effects. As for Eutrophication, electricity and Bunker fuel oil C were major effects. As for Global Warming, electricity and LNG were major effects. As for Ozone Depletion, plate glasses were major effects. Among the six categories, the biggest impact potential was found to be Global Warming as 97% of total, but the rest could be negligible.