• Title/Summary/Keyword: Global optimization

Search Result 1,120, Processing Time 0.038 seconds

A Study on Mobile Wireless Communication Network Optimization Using Global Search Algorithm (전역 탐색 알고리듬을 이용한 이동 무선통신 네트워크의 최적화에 대한 연구)

  • 김성곤
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.1
    • /
    • pp.87-93
    • /
    • 2004
  • In the design of mobile wireless communication network, BSC(Base Station Location), BSC(Base Station Controller) and MSC(Mobile Switching Center) are the most important parameters. Designing base station location, the cost must be minimized by combining various, complex parameters. We can solve this Problem by combining optimization algorithm, such as Simulated Annealing, Tabu Search, Genetic Algorithm, Random Walk Algorithm that have been used extensively for global optimization. This paper shows the 4 kinds of algorithm to be applied to the optimization of base station location for communication system and then compares, analyzes the results and shows optimization process of algorithm.

  • PDF

Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Fuwen Liu;Weihao Zhou;Xueguan Song
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4181-4194
    • /
    • 2022
  • Main steam safety valves are commonly used in nuclear power plants to provide final protections from overpressure events. Blowdown and dynamic stability are two critical characteristics of safety valves. However, due to the parameter sensitivity and multi-parameter features of safety valves, using traditional method to design and/or optimize them is generally difficult and/or inefficient. To overcome these problems, a surrogate model-based valve design optimization is carried out in this study, of particular interest are methods of valve surrogate modeling, valve parameters global sensitivity analysis and valve performance optimization. To construct the surrogate model, Design of Experiments (DoE) and Computational Fluid Dynamics (CFD) simulations of the safety valve were performed successively, thereby an ensemble surrogate model (E-AHF) was built for valve blowdown and stability predictions. With the developed E-AHF model, global sensitivity analysis (GSA) on the valve parameters was performed, thereby five primary parameters that affect valve performance were identified. Finally, the k-sigma method is used to conduct the robust optimization on the valve. After optimization, the valve remains stable, the minimum blowdown of the safety valve is reduced greatly from 13.30% to 2.70%, and the corresponding variance is reduced from 1.04 to 0.65 as well, confirming the feasibility and effectiveness of the optimization method proposed in this paper.

Global Optimization of the Turning Operation Using Response Surface Method (선반가공공정에서 RSM을 이용한 가공공정의 포괄적 최적화)

  • Lee, Hyun-Wook;Kwon, Won-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.114-120
    • /
    • 2010
  • Optimization of the turning process has been concentrated on the selection of the optimal cutting parameters, such as cutting speed, feed rate and depth of cut. However, optimization of the cutting parameters does not necessarily guarantee the maximum profit. For the maximization of the profit, parameters other than cutting parameters have to be taken care of. In this study, 8 price-related parameters were considered to maximize the profit of the product. Regression equations obtained from RSM technique to relate the cutting parameters and maximum cutting volume with a given insert were used. The experiments with four combinations of cutting inserts and material were executed to compare the results that made the profit and cutting volume maximized. The results showed that the cutting parameters for volume and profit maximization were totally different. Contrary to our intuition, global optimization was achieved when the number of inserts change was larger than those for volume maximization. It is attributed to the faster cutting velocity, which decreases processing time and increasing the number of tool used and the total tool changing time.

Weighting objectives strategy in multicriterion fuzzy mechanical and structural optimization

  • Shih, C.J.;Yu, K.C.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.373-382
    • /
    • 1995
  • The weighting strategy has received a great attention and has been widely applied to multicriterion optimization. This gaper examines a global criterion method (GCM) with the weighting objectives strategy in fuzzy structural engineering problems. Fuzziness of those problems are in their design goals, constraints and variables. Most of the constraints are originated from analysis of engineering mechanics. The GCM is verified to be equivalent to fuzzy goal programming via a truss design. Continued and mixed discrete variable spaces are presented and examined using a fuzzy global criterion method (FGCM). In the design process a weighting parameter with fuzzy information is introduced into the design and decision making. We use a uniform machine-tool spindle as an illustrative example in continuous design space. Fuzzy multicriterion optimization in mixed design space is illustrated by the design of mechanical spring stacks. Results show that weighting strategy in FGCM can generate both the best compromise solution and a set of Pareto solutions in fuzzy environment. Weighting technique with fuzziness provides a more relaxed design domain, which increases the satisfying degree of a compromise solution or improves the final design.

Development of a Branch-and-Bound Global Optimization Based on B-spline Approximation (비스플라인 분지한계법 기반의 전역최적화 알고리즘 개발)

  • Park, Sang-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.191-201
    • /
    • 2010
  • This paper presents a new global optimization algorithm based on the branch-and-bound principle using Bspline approximation techniques. It describes the algorithmic components and details on their implementation. The key components include the subdivision of a design space into mutually disjoint subspaces and the bound calculation of the subspaces, which are all established by a real-valued B-spline volume model. The proposed approach was demonstrated with various test problems to reveal computational performances such as the solution accuracy, number of function evaluations, running time, memory usage, and algorithm convergence. The results showed that the proposed algorithm is complete without using heuristics and has a good possibility for application in large-scale NP-hard optimization.

A Study on Adaptive Partitioning-based Genetic Algorithms and Its Applications (적응 분할법에 기반한 유전 알고리즘 및 그 응용에 관한 연구)

  • Han, Chang-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.207-210
    • /
    • 2012
  • Genetic algorithms(GA) are well known and very popular stochastic optimization algorithm. Although, GA is very powerful method to find the global optimum, it has some drawbacks, for example, premature convergence to local optima, slow convergence speed to global optimum. To enhance the performance of GA, this paper proposes an adaptive partitioning-based genetic algorithm. The partitioning method, which enables GA to find a solution very effectively, adaptively divides the search space into promising sub-spaces to reduce the complexity of optimization. This partitioning method is more effective as the complexity of the search space is increasing. The validity of the proposed method is confirmed by applying it to several bench mark test function examples and the optimization of fuzzy controller for the control of an inverted pendulum.

Toward Optimal FPGA Implementation of Deep Convolutional Neural Networks for Handwritten Hangul Character Recognition

  • Park, Hanwool;Yoo, Yechan;Park, Yoonjin;Lee, Changdae;Lee, Hakkyung;Kim, Injung;Yi, Kang
    • Journal of Computing Science and Engineering
    • /
    • v.12 no.1
    • /
    • pp.24-35
    • /
    • 2018
  • Deep convolutional neural network (DCNN) is an advanced technology in image recognition. Because of extreme computing resource requirements, DCNN implementation with software alone cannot achieve real-time requirement. Therefore, the need to implement DCNN accelerator hardware is increasing. In this paper, we present a field programmable gate array (FPGA)-based hardware accelerator design of DCNN targeting handwritten Hangul character recognition application. Also, we present design optimization techniques in SDAccel environments for searching the optimal FPGA design space. The techniques we used include memory access optimization and computing unit parallelism, and data conversion. We achieved about 11.19 ms recognition time per character with Xilinx FPGA accelerator. Our design optimization was performed with Xilinx HLS and SDAccel environment targeting Kintex XCKU115 FPGA from Xilinx. Our design outperforms CPU in terms of energy efficiency (the number of samples per unit energy) by 5.88 times, and GPGPU in terms of energy efficiency by 5 times. We expect the research results will be an alternative to GPGPU solution for real-time applications, especially in data centers or server farms where energy consumption is a critical problem.

Optimal Design of a Heat Sink Using the Kriging Method (크리깅 방법에 의한 방열판 최적설계)

  • Ryu Je-Seon;Rew Keun-Ho;Park Kyoungwoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1139-1147
    • /
    • 2005
  • The shape optimal design of the plate-fin type heat sink with vortex generator is performed to minimize the pressure loss subjected to the desired maximum temperature numerically. Evaluation of the performance function, in general, is required much computational cost in fluid/thermal systems. Thus, global approximate optimization techniques have been introduced into the optimization of fluid/thermal systems. In this study, Kriging method Is used to obtain the optimal solutions associated with the computational fluid dynamics (CFD). The results show that when the temperature .rise is less than 40 K, the optimal design variables are $B_1=2.44\;mm,\;B_2=2.09\;mm$, and t=7.58 mm. Kriging method can dramatically reduce computational time by 1/6 times compared to SQP method so that the efficiency of Kriging method can be validated.

Optimum Design of Trusses Using Genetic Algorithms (유전자 알고리즘을 이용한 트러스의 최적설계)

  • 김봉익;권중현
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.53-57
    • /
    • 2003
  • Optimum design of most structural system requires that design variables are regarded as discrete quantities. This paper presents the use of Genetic Algorithm for determining the optimum design for truss with discrete variables. Genetic Algorithm are know as heuristic search algorithms, and are effective global search methods for discrete optimization. In this paper, Elitism and the method of conferring penalty parameters in the design variables, in order to achieve improved fitness in the reproduction process, is used in the Genetic Algorithm. A 10-Bar plane truss and a 25-Bar space truss are used for discrete optimization. These structures are designed for stress and displacement constraints, but buckling is not considered. In particular, we obtain continuous solution using Genetic Algorithms for a 10-bar truss, compared with other results. The effectiveness of Genetic Algorithms for global optimization is demonstrated through two truss examples.

Structural Design Optimization of the Aluminum Space Frame Vehicle (알루미늄 스페이스 프레임 차량의 구조 최적화 설계 기법)

  • Kang, Hyuk;Kyoung, Woo-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.175-180
    • /
    • 2008
  • Due to the global environment problems and the consumer's need for higher vehicle performance, it becomes very important for the global car makers to reduce vehicle weight. To reduce vehicle weight, many car makers have tried to use lightweight materials, for example, aluminum, magnesium, and plastics, for the vehicle structures and components. Especially, the ASF(aluminum space frame) is known for the excellent concept of the vehicle to satisfy structural rigidity, safety performance and weight reduction. In this research, the design of experiments and the multi-disciplinary optimization technique were utilized to meet the weight and structural rigidity target of the ASF. For the structural performance of the ASF, the locations and the size of aluminum extruded frames, aluminum cast nodes, and the aluminum sheets were optimized. As a result, the optimization design procedure has been set up to meet both structural and weight target of the ASF, and the assembled ASF showed good structural performance and weight reduction.