• 제목/요약/키워드: Global feature selection

검색결과 35건 처리시간 0.022초

자료 변환 기반 특징 선택과 국소적 자기상관 지수를 이용한 초분광 영상의 이상값 탐지 (Anomaly Detection from Hyperspectral Imagery using Transform-based Feature Selection and Local Spatial Auto-correlation Index)

  • 박노욱;유희영;신정일;이규성
    • 대한원격탐사학회지
    • /
    • 제28권4호
    • /
    • pp.357-367
    • /
    • 2012
  • 이 논문에서는 초분광 영상으로부터 이상값을 탐지하기 위해 자료 변환 기반 특징 추출과 선정 및 국소적 자기상관지수를 이용하는 2단계 방법론을 제안한다. 초분광 영상이 제공하는 중복된 분광 정보들의 축약을 위해 우선적으로 주성분 변환과 3차원 웨이브렛 변환을 적용하였다. 그리고 축약된 자료 변환 기반 특징을 대상으로 왜도와 국소적 왜도 비율을 함께 고려하여 이상값 탐지를 위한 유효 특징을 선정하였다. 최종적으로 기존 분광 정보만을 이용하는 이상값 탐지 방법론들에 공간 자기상관성을 함께 고려할 수 있도록 국소적 자기상관지수(LISA)를 이상값 탐지 방법론으로 적용하였다. 제안 방법론의 적용성 평가를 위해 항공 CASI 자료를 대상으로 한 실험을 수행하였다. 실험 결과, 기존 분광 정보만을 고려하는 RX detector나 고유값 기반 주요 주성분만을 이용하는 경우에 비해 유효 특징 선정과 연계된 LISA 통계값이 높은 탐지 능력을 나타내었다. 또한 3차원 웨이브렛 변환 기반 저주파와 고주파 특징들을 결합한 경우가 유효 주성분을 사용하는 경우에 비해 가장 높은 탐지 성능을 나타냈다.

Research on Per-cell Codebook based Channel Quantization for CoMP Transmission

  • Hu, Zhirui;Feng, Chunyan;Zhang, Tiankui;Gao, Qiubin;Sun, Shaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권6호
    • /
    • pp.1828-1847
    • /
    • 2014
  • Coordinated multi-point (CoMP) transmission has been regarded as a potential technology for LTE-Advanced. In frequency division duplexing systems, channel quantization is applied for reporting channel state information (CSI). Considering the dynamic number of cooperation base stations (BSs), asymmetry feature of CoMP channels and high searching complexity, simply increasing the size of the codebook used in traditional multiple antenna systems to quantize the global CSI of CoMP systems directly is infeasible. Per-cell codebook based channel quantization to quantize local CSI for each BS separately is an effective method. In this paper, the theoretical upper bounds of system throughput are derived for two codeword selection schemes, independent codeword selection (ICS) and joint codeword selection (JCS), respectively. The feedback overhead and selection complexity of these two schemes are analyzed. In the simulation, the system throughput of ICS and JCS is compared. Both analysis and simulation results show that JCS has a better tradeoff between system throughput and feedback overhead. The ICS has obvious advantage in complexity, but it needs additional phase information (PI) feedback for obtaining the approximate system throughput with JCS. Under the same number of feedback bits constraint, allocating the number of bits for channel direction information (CDI) and PI quantization can increase the system throughput, but ICS is still inferior to JCS. Based on theoretical analysis and simulation results, some recommendations are given with regard to the application of each scheme respectively.

Support Vector Regression에 기반한 전력 수요 예측 (Electricity Demand Forecasting based on Support Vector Regression)

  • 이형로;신현정
    • 산업공학
    • /
    • 제24권4호
    • /
    • pp.351-361
    • /
    • 2011
  • Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.

Vehicle Instrument Cluster Layout Differentiation for Elderly Drivers

  • Kim, Sang-Hwan
    • 대한인간공학회지
    • /
    • 제35권5호
    • /
    • pp.449-464
    • /
    • 2016
  • Objective: The objective of this study is to identify essential requirements of the instrument cluster's features and layout for elderly drivers through interview and paper prototyping. Background: Recent updates implemented in passenger vehicles require more complex information to be processed by drivers. Concurrently, a large portion of the US population, the baby boomer generation has aged, causing their physical and cognitive abilities to deter. Thus it is crucial that new methods be implemented into vehicle design in order to accommodate for the deterioration of mental and physical abilities. Method: Forty elderly drivers and twenty young drivers participated in this study. The test included three sessions including: 1) location value assessment to identify the priority of areas within the instrument cluster; 2) component value assessment to capture rankings of the degree of importance and frequency of use for possible instrument cluster components; and 3) paper prototyping to collect self-designed cluster with selection of designs for each component and location of features from each participant. Results: Results revealed differences in the area priority of the instrument cluster as well as the shape and location of component features for age and gender groups. Conclusion: The study provided insights on instrument cluster layout guidelines by proving elderly driver's mental model and preferred cluster design configurations to improve driving safety. Application: LCD-based vehicle instrument cluster design, with an adaptable feature configuration for cluster components and layouts.

효과적 이모션마이닝을 위한 속성선택 방법에 관한 연구 (Exploring Feature Selection Methods for Effective Emotion Mining)

  • 어균선;이건창
    • 디지털융복합연구
    • /
    • 제17권3호
    • /
    • pp.107-117
    • /
    • 2019
  • 블로그, 소셜 미디어 등의 발달로 인해 점점 더 많은 사람들이 본인의 의견이나 감정을 표현하기 위해 온라인상에서 텍스트 문장을 작성한다. 그리고 이같은 온라인 텍스트 문장속에 숨겨져 있는 긍정 또는 부정등의 감성을 찾아내는 연구분야를 감성분석 이라고 한다. 그중에서도 이모션 마이닝은 사람들의 구체적인 이모션을 찾아내는데 초점을 맞춘 연구분야이다. 본 연구에서는 속성선택 방법과 단일 및 앙상블 분류기를 조합하여 효과적인 이모션 마이닝 예측모델을 제시하고자 한다. 이를 위해 두가지 대표적인 오픈 데이터인 Tweet와 SemEval2007 데이터를 이용하여 TF-IDF를 계산하고 백 오브 워즈(BOW: bag-of-words) 형태로 속성 셋을 구성하였다. 그리고 효과적인 이모션 마이닝이 될 수 있는 최적의 속성을 선택하기 위하여 상관관계 기반 속성선택(CFS), 정보획득 속성선택 (IG), 그리고 ReliefF 등 세가지 속성선택 방법을 적용하였다. 선택된 속성을 이용하여 아홉가지 분류기 모델로 이모션 마이닝의 정확도를 비교하였다. 실험 결과, Tweet 데이터는 의사결정나무(DT)가 CFS, IG, ReliefF에 의한 속성을 이용할 경우 정확도가 상승했고, 랜덤서브스페이스(RS)는 CFS, IG에 선택된 속성을 사용할 경우 정확도가 상승했다. SemEval2007 데이터는 ReliefF에 의해 선택된 속성으로 로지스틱 회귀분석(LR)을 적용하였을 때 정확도가 상승했고, 나이브 베이지안 네트워크(NBN)은 CFS, IG에 의한 속성을 사용할 경우 정확도가 상승하였다.

A Saliency-Based Focusing Region Selection Method for Robust Auto-Focusing

  • Jeon, Jaehwan;Cho, Changhun;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권3호
    • /
    • pp.133-142
    • /
    • 2012
  • This paper presents a salient region detection algorithm for auto-focusing based on the characteristics of a human's visual attention. To describe the saliency at the local, regional, and global levels, this paper proposes a set of novel features including multi-scale local contrast, variance, center-surround entropy, and closeness to the center. Those features are then prioritized to produce a saliency map. The major advantage of the proposed approach is twofold; i) robustness to changes in focus and ii) low computational complexity. The experimental results showed that the proposed method outperforms the existing low-level feature-based methods in the sense of both robustness and accuracy for auto-focusing.

  • PDF

WLSD: A Perceptual Stimulus Model Based Shape Descriptor

  • Li, Jiatong;Zhao, Baojun;Tang, Linbo;Deng, Chenwei;Han, Lu;Wu, Jinghui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권12호
    • /
    • pp.4513-4532
    • /
    • 2014
  • Motivated by the Weber's Law, this paper proposes an efficient and robust shape descriptor based on the perceptual stimulus model, called Weber's Law Shape Descriptor (WLSD). It is based on the theory that human perception of a pattern depends not only on the change of stimulus intensity, but also on the original stimulus intensity. Invariant to scale and rotation is the intrinsic properties of WLSD. As a global shape descriptor, WLSD has far lower computation complexity while is as discriminative as state-of-art shape descriptors. Experimental results demonstrate the strong capability of the proposed method in handling shape retrieval.

Zernike 모멘트 기반의 회전 불변 홍채 인식 (Rotation-Invariant Iris Recognition Method Based on Zernike Moments)

  • 최창수;서정만;전병민
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.31-40
    • /
    • 2012
  • 홍채 인식은 홍채 패턴 정보를 이용하여 사람의 신원을 확인하는 생체 인식 기술이다. 이러한 홍채 인식 시스템에 있어 조명의 영향이나 동공의 크기, 머리의 기울어짐 등으로 인해 발생될 수 있는 홍채 패턴의 변화에 대해 무관한 특징을 추출하는 것은 중요한 과제이다. 본 논문에서는 Zernike Moment를 이용해 홍채의 회전에 강인한 홍채 인식 방법을 제안하였다. 빠르고 효과적인 인식을 위한 Zernike Moment를 선택하기 위해 전역 최적 차수를 이용하였고, 각각의 홍채 클래스와 매칭하기 위하여 국소 최적 차수를 사용 하였다. 제안된 방법은 특징 추출 및 특징 비교 시 회전에 대해 별도의 처리가 필요하지 않아 고속의 특징 추출 및 특징 비교가 가능하며 성능도 기존의 방법과 대등함을 실험을 통하여 확인하였다.

Novel Approaches for Efficient Antifungal Drug Action

  • Lee, Heejeong;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1771-1781
    • /
    • 2018
  • The emergence of multidrug-resistant microorganisms, as well as fungal infectious diseases that further threaten health, especially in immunodeficient populations, is a major global problem. The development of new antifungal agents in clinical trials is inferior to the incidence of drug resistance, and the available antifungal agents are restricted. Their mechanisms aim at certain characteristics of the fungus in order to avoid biological similarities with the host. Synthesis of the cell wall and ergosterol are mainly targeted in clinical use. The need for new approaches to antifungal therapeutic agents or development alternatives has increased. This review explores new perspectives on mechanisms to effectively combat fungal infections and effective antifungal activity. The clinical drug have a common feature that ultimately causes caspase-dependent cell death. The drugs-induced cell death pathway is associated with mitochondrial dysfunction, including mitochondrial membrane depolarization and cytochrome c release. This mechanism of action also reveals antimicrobial peptides, the primary effector molecules of innate systems, to highlight new alternatives. Furthermore, drug combination therapy is suggested as another strategy to combat fungal infection. The proposal for a new approach to antifungal agents is not only important from a basic scientific point of view, but will also assist in the selection of molecules for combination therapy.

Person Re-identification using Sparse Representation with a Saliency-weighted Dictionary

  • Kim, Miri;Jang, Jinbeum;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권4호
    • /
    • pp.262-268
    • /
    • 2017
  • Intelligent video surveillance systems have been developed to monitor global areas and find specific target objects using a large-scale database. However, person re-identification presents some challenges, such as pose change and occlusions. To solve the problems, this paper presents an improved person re-identification method using sparse representation and saliency-based dictionary construction. The proposed method consists of three parts: i) feature description based on salient colors and textures for dictionary elements, ii) orthogonal atom selection using cosine similarity to deal with pose and viewpoint change, and iii) measurement of reconstruction error to rank the gallery corresponding a probe object. The proposed method provides good performance, since robust descriptors used as a dictionary atom are generated by weighting some salient features, and dictionary atoms are selected by reducing excessive redundancy causing low accuracy. Therefore, the proposed method can be applied in a large scale-database surveillance system to search for a specific object.