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Abstract 
 

Motivated by the Weber’s Law, this paper proposes an efficient and robust shape descriptor 
based on the perceptual stimulus model, called Weber’s Law Shape Descriptor (WLSD). It is 

based on the theory that human perception of a pattern depends not only on the change of 

stimulus intensity, but also on the original stimulus intensity. Invariant to scale and rotation 

is the intrinsic properties of WLSD. As a global shape descriptor, WLSD has far lower 

computation complexity while is as discriminative as state-of-art shape descriptors. 

Experimental results demonstrate the strong capability of the proposed method in handling 

shape retrieval. 
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1. Introduction 

With the development of the Internet and the rapid update of the electronic equipment, the 

efficient and effective image retrieval methods are required to satisfy the image retrieval 

needs of people. Unlike the traditional textual annotation based retrieval methods, 

content-based image retrieval (CBIR) systems, which represent the image as features like 

color, texture and shape to implement image matching, are expected to realize the function of 

searching image in high efficiency [1]. Shape is an important perception for humans to 

understand images. However, to establish effective shape feature extraction and matching 

method is still a challenging task. A robust shape descriptor is required to be invariant to 

translation, rotation and scale as well as insensitive to noise, tolerant to distortion and even 

occlusion [2]. In addition, the massive database requires the CBIR has quick retrieval 

response, therefore, low computation complexity is also necessary for a shape descriptor.  

  Many shape representation and analysis methods have been proposed in the past decades. 

They can be generally classified into two categories: contour-based methods and 

region-based methods. Among the two categories, contour-based methods are in the 

majority. 

There are many contour-based methods. One of the classic methods is Curvature Scale 

Space (CSS) [3]. The CSS uses the zero-crossings of the contour curvature to divide the 

whole shape contour into convex/concave arcs. CSS smoothens the contour by Gaussian 

kernels of increasing scales, and finally the whole contour will be convex with pairs of the 

curvature zero-crossing points evolving together. The whole evolving process of the 

curvature zero-crossings can be illustrated by the CSS Image, whose similarity is used for 

shape matching. Another well-known shape descriptor is Shape Context (SC) [4]. At each 

reference point, SC uses the spatial location of remaining contour points to form the 2D 

histogram, and thus finds correspondence by the histogram sets of two shapes. In order to 

tackle the shape articulation, Inner Distance Shape Context (IDSC) [5] extends the SC, and 

proposes to replace the traditional Euclidean distance by inner distance, which is the shortest 

path between landmark points within the shape silhouette, and dynamic programming is used 

to preserve the ordering of the contour points. Unlike SC and IDSC which utilize local 

histogram matching methods, Contour Points Distribution Histogram (CPDH) [9] uses one 

histogram to describe the distribution of the whole contour points of a shape under polar 

coordinate, and the shape similarity is obtained by Earth Mover’s Distance (EMD). In [8], 

another shape descriptor called Contour Flexibility (CF) is proposed, which describes the 

shape contour points by their deformable potential and also uses dynamic programming to do 

shape matching.  Besides designing discriminative shape descriptors, some new shape 

matching methods are also proposed. One of them is Hierarchical Procrustes Matching 

(HPM) [6]. HPM is proposed to conduct the shape matching hierarchically by using the 

longer segment matching result to predict the correspondence of the shorter and finer 

segment. In [7], Shape tree (ST) describes the shape by hierarchically dividing the shape 

contour into short sub-curves, and adopts the elastic matching method for shape comparison. 

The ST representation has good tolerance to shape distortion, and random shape 

deformations can be obtained by adding noise to the nodes in a shape tree without 

perceptually identifying the shape category. 

  The other major category of shape descriptor is region-based methods. For example, the 

Zernike moments (ZM) [10] is selected as the MPEG7 standard region-based shape 

descriptor, but it is relatively time consuming and has limited tolerance to shape distortion. 

Another moment-based shape descriptor is Moment Invariant (MI) [11]. Although MI 
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performs not as well as ZM, it only has 7 feature vectors, with low storage and high speed 

retrieval response, so it is also a widely used shape analysis method. Recently, Support 

Vector Shape (SVS) [12] is proposed which uses the decision function trained by Support 

Vector Machine (SVM) to describe the shape. With the Radial Basis Function (RBF), SVS 

maps points within the shape to high dimension, and has good performance against large 

noise. 

  Recent years, there are some new trends in shape analysis. For instance, some work focus 

on the post-processing after shape matching [13] [14]. In [13], it is proposed to construct the 

graph model using the similarity (or distance) of pairs of shapes, and adopt the graph 

transduction to learn the graph structure implicitly. The context-based shape retrieval 

methods like graph transduction can well handle the situation in which intra-class distances 

are larger than inter-class ones and is capable to improve the retrieval rate based on available 

shape measures. In addition, there are researches about the heuristic-based auxiliary shape 

descriptor aims at describing some specific kinds of shapes. One of the representative work 

is [15]. In [15], two perceptually motivated strategies are proposed, the first handles shapes 

with base structure and “strand” structures, the second handles symmetry shapes. The two 

strategies can be integrated into existing shape matching methods to improve the retrieval or 

classification performance. In this paper, we focus more on shape representation and 

matching and do not focus on the above post-processing methods, since they can be used in 

all available shape measures. 

The remainder of paper is organized as follows. In Section 2, we review the previous 

shape representation work in multi-scale which is in close relation to our approach. Section 3 

describes the new shape representation in detail. Section 4 presents the experimental results 

using the proposed method for shape retrieval in two datasets, including the widely used 

MPEG-7 core dataset and Tari 1000 dataset respectively. The experimental result in 

MPEG-7 shows the competitive retrieval performance to the state-of-the-art shape 

descriptors, and the results in Tari 1000 demonstrate the proposed method is also very 

discriminative in handling articulated shapes. 

2. Related Work 

Contour-based methods are more popular than region-based ones and it can further be 

divided into global description methods and local description methods. Usually, local 

descriptors are more discriminative than global ones. The massive database requires not only 

high retrieval rate, but also low storage features and quick retrieval response. However, most 

local description methods aim to find correspondence of feature sets of contours, 

consequently sacrificing computation efficiency, which is not suitable for large database 

retrieval.  

Multi-scale methods are an important research branch of shape analysis and have shown 

high discriminative ability [3][6][7][29][30]. However, most of the existing multi-scale 

methods still use the scale normalization to get the scale invariance, and circular shift 

matching to achieve the rotation invariance, all of which add to high computation load. In 

addition, the general multi-scale shape representation itself is another step that is 

time-consuming. For example, as discussed in Section 1, CSS achieves the multi-scale 

representation by smoothing the shape contour using Gaussian kernels. The same 

representation method is also adopted by [29]. 

This paper proposes a new contour-based shape descriptor, called Weber’s Law Shape 

Descriptor (WLSD). WLSD is a global shape descriptor with very low computation 
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complexity while is as discriminative as the state-of-the-art local descriptors. In addition, 

WLSD is intrinsically extended to multi-scale without extra computation load, and it 

represents a shape by only 24 dimension vector each scale, which leads to efficient shape 

matching without scale normalization or circular shift. 

WLSD aims to describe the salient variation of a shape contour that stimulate human 

perception. According to Weber’s Law, under the fact that human perception of a pattern 

depends not only on the stimulus difference but also on the ratio of the relative stimulus 

change to the original stimulus intensity, we first design Contour Angular Feature (CAF) to 

model the so-called stimulus intensity, and then establish WLSD according to the Weber’s 

Law Equation. WLSD is then extended to multi-scale to enhance its description capacity. We 

also adopt the feature selection method to select the effective scales of WLSD. The 

experiments demonstrate the discriminative power and low computation property of WLSD 

in shape retrieval. 

3. Weber’s Law Shape Descriptor for Shape Representation 

In this section, we first review Weber’s Law and then propose the Contour Angle Feature 

(CAF). We then adopt the CAF to construct WLSD, and demonstrate the importance of the 

multi-scale property of WLSD. Finally, we give the WLSD scale selection procedures by 

SFS. 

3.1 Weber’s Law 

Weber’s Law is a psychological rule. It demonstrates that the change in stimulus intensity 

varies by the original stimulus intensity, and the ratio of the just noticeable difference (JND) 

of the perception to the original stimulus is a constant [23] [24]. The relationship can be 

expressed as:  
 

                              
I

k
I


                                     (1) 

 

where I denotes the JND, I represents the original stimulus intensity, k is the constant 

corresponding to the certain perception. The fraction /I I is known as the Weber fraction or 

Weber proportion. For example, an experiment conducted by Weber in 1840 shows that 

people can feel the increase or decrease of the additional 1 gram if they hold a 52 grams 

weight object, but can only feel 2 gram if they hold 104 grams, which demonstrates the JND 

differs according to the original stimulus intensity. 

3.2 WLSD 

Weber’s Law gives us the motivation to a perceptual stimulus model. The first task is to 

construct a shape descriptor as the original stimulus intensity. Many shape descriptors have 

been proposed, such as the distance between the shape centroid and the contour, which is 

used in [25] to do the trademark retrieval, others, like the contour curvature, signature, 

Fourier Descriptor (FD), are either difficult to model Weber’s Law or are sensitive to scale 

or rotation variation, so we design a new shape descriptor called Contour Angular Feature 

(CAF). 
 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 12, December 2014            4517 

3.2.1 The Original Stimulus Feature - Contour Angle Feature 

We first introduce the single scale CAF, and then give the general definition of the 

multi-scale CAF. 

  Given a closed contour point O with its nearest right and left points A and B , then AOB is 

called the CAF of point O . Note AOB has two directions, inwards or outwards to the closed 

contour, and the sum of two angles are 2 . In this paper, we suppose the CAF always be the 

outwards one. CAF can be extended to multi-scale naturally, let
sCAF signifies the s scale of 

CAF, then angle AOB is
1CAF , and

2CAF is the angle formed by contour point O with its 

second nearest right and left points, etc. Now we give the general definition of
sCAF : 

Definition I: Given a closed contour C , and sample it by n clockwise points, whose 

coordinates are orderly ( , )i ix y , where 1,2,...,i n , then the
sCAF of ( , )i iO x y is defined as: 
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where 1,2,..., ( 1) / 2s n     (    denotes round toward negative infinity), operator 

represents the vector cross product, mod( , ) mod( , )( , ,0)s i s n i i s n iOA x x y y    , 

mod( , ) mod( , )( , ,0)s i s n i i s n iOB x x y y    . 

 
(a) (b) 

 

Fig. 1. (a) Illustration of the sCAF   

(b) sCAF varies from nearly 0 (the bottom square) to near (the upper square) 

 

In Definition I, the multi-scale sCAF can be obtained with s varying from1 to ( 1) / 2n   , 

sA and sB are the right and left points relative to O respectively, and both are s points away 

from O . Consequently, every sample point can have the maximum ( 1) / 2n   scale angles. 

Examples of the 1CAF , 3CAF , and 5CAF of point ( , )i iO x y are shown in Fig. 1 (a). The reason 
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why extending sOA and sOB to three dimension is to highlight the direction property of the 

vector cross product (for instance, 0s sOA OB  indicates that B O A  is clockwise 

ordered), therefore, the definition guarantees angle s

i always directing outwards the interior 

of a closed contour. Analogously, the
sCAF of the opposite direction can be defined, which is 

equivalent to Definition I. The defined s

i varies from 0 to 2 , indicating the local contour of 

the shape changing perceptually from inwards strand structure to outwards one (as illustrated 

by Fig. 1 (b)), so the
sCAF is capable to describe all variation of a shape contour. Notice CAF 

is invariant to scale and rotation. 

 

3.2.2 Weber’s Law Shape Descriptor 

Hinted by the Weber’s Law, we use the CAF difference between the current point and its 

neighbors to model the difference of the stimulus intensity, and proportion of CAF 

differences to CAF of the current point to get the saliency variation that stimulate human 

perception. We then adopt the arctangent function to operate on the proportion [17], which 

can reduce the negative effect caused by noise. Let
i be

1CAF of the contour point ( , )i iO x y , 

then the saliency of point ( , )i iO x y can be described as: 
 

                 
mod( 1, ) mod( 1, )

( ) arctan
i n i i n i

i

i i

f
   


 

   
  

 
                     (3) 

 

where
i denotes the

1CAF of the current point,
mod( 1, )i n 

and
mod( 1, )i n 

represent the right and left 

neighbor points of the current point respectively. We call this feature the Weber’s Law 

Shape Descriptor (WLSD), and ( )if  the WLSD value of point ( , )i iO x y . 

  The idea of the WLSD is partially motivated by Weber’s Law Descriptor (WLD) in [17]. 

WLD is an image descriptor regards the gray intensity as the original stimulus intensity, and 

the difference of the stimulus is the intensity differences of a current pixel and its neighbors. 

While in WLSD, CAF is viewed as the stimulus intensity, and the difference of the stimulus 

is the CAF difference of a current contour point and its neighbors. However, the description 

targets of WLSD and WLD are different, leading to the necessity of miming more 

information of WLSD: the information content of a shape contour is much smaller than that 

of a gray image, and the CAF of a contour varies relatively more smoothly than that of gray 

intensity. That leads to the motivation of extending WLSD to multi-scale.  

(a)bone1 (b)bone2 (c)camel1 (d)camel2

(e)colormap  

Fig. 2. 1 1WLSD  (single scale WLSD) value linearly mapped to the colormap bar 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 12, December 2014            4519 

If we only use single neighbor based WLSD shown in Equation (3), the relatively large 

WLSD value points (salient points) will only occupy a small proportion of the whole contour 

points. Fig. 2 maps the WLSD value of contour points linearly to the colormap bar illustrated 

in Fig. 2 (e) so that we can observe the description capacity of WLSD visually (the minimum 

value maps to leftmost deep blue, maximum to the rightmost deep red). Fig. 2 depicts the 

single scale WLSD (i.e. the WLSD indicated by Equation (3)) of the contour. Because
1CAF

varies slowly, WLSD value has a sparse distribution, with most of the WLSD value focus on 

the middle of the colormap bar (nearly 0). In addition, the single neighbor based WLSD 

value presents an intermittent appearance because of the noise or the continuity variation of 

the shape contour, which is an unstable and less discriminative description. Our goal is to let 

WLSD give a relatively continuous and robust description of the contour in accordance to 

human perception. As a result, we introduce the multi-scale WLSD. 

  The scale of WLSD has close relation with the scale of CAF, let wWLSD represents WLSD 

of scale w , given a contour sampled with n points and its corresponding
sCAF , let 1w  , then 

the
1WLSD of point ( , )i iO x y is: 

 

           
m o d ( , ) m o d ( , )
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s s s s
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                    (4) 

 

where s

i signifies the
sCAF defined as Equation (2). Consequently, each wWLSD has a 

corresponding scale of
sCAF . In this sense, the scale of WLSD is also determined by the scale 

of
sCAF implicitly. We use

s wWLSD 
represents the wWLSD extracted from

sCAF , then the 

notation of the Equation (4) is 1sWLSD  . Combining the scales of s and w , we introduce the 

general definition of
s wWLSD 

: 

Definition II: Given a closed contour C , and sample it by n clockwise points, whose 

coordinates are orderly ( , )i ix y , where 1,2,...,i n , the
s wWLSD 

of point ( , )i iO x y is defined as: 

 

       
m o d ( , ) m o d ( , )

1 1
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s s s sw w
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where s

i is the sCAF of the contour point ( , )i iO x y , and 1,..., ( 1) / 2 /w n s       (    denotes 

round toward negative infinity). 

  Therefore, given the sCAF of a contour, the stimulus intensity difference of the current 

scale w is the difference between the current point’s
sCAF and the

sCAF of its right and left w

points (the adjacent distance within each sides’ points is s ).  

Fig. 3 illustrates some examples of s wWLSD  . Red represents the current point, green 

denotes the right and left w number of points corresponding to different scale
s wWLSD 

.  
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（a）

（b）

（c）

（d）  

Fig. 3. The illustration of the
s wWLSD 

 

 

Fig. 4 illustrates that the multi-scale WLSD can describe the contour saliency well and has 

the desired continuous salient variation description property. (a) ~ (d) depict the
5 5WLSD 

, 

and demonstrate that multi-scale WLSD has relatively uniform distribution within the 

WLSD range of value and can describe the contour saliency continuously. Fig. 4 also 

indicate WLSD has the similar description of intra-class shapes. 

 

(a)bone1 (b)bone2 (c)camel1 (d)camel2

(e)colormap

Fig. 4. 
5 5WLSD 

value linearly mapped to the colormap 

3.2.3 WLSD Histogram and WLSD scale selection 

In order to let the feature be tolerant to the shape distortion to some extent, we uniformly 

divide the range of s wWLSD  value, and use one dimensional histogram as the global shape 

feature. Given two histograms 1H and 2H , we adopt the commonly used 2 distance to 

compare them: 

 

                         
2

1 2

1 2

1 1 2

[ ]1
( , )

2

K
k k

k k k

h h
d H H

h h





                          (5) 

 

where K represents the number of histogram bins,
1kh and

2kh signifies number of points falling 

into the k th bin of
1H and

2H respectively. In the paper we take 24K  . 

  Different scale of WLSD present different discriminative information, for instance, 

3 3WLSD  can capture local information of the contour, while
16 5WLSD 

tends to describe the 
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contour in a global view. As mentioned above, each
wWLSD has a corresponding scale of

sCAF . 

Given a n points contour, then the whole number of scales of CAF is ( 1) / 2n   , and each 

scale of the CAF corresponds to ( 1) / 2 /n s      scales of WLSD. Consequently, given a n

points contour, we can get the whole number of scales of WLSD, which is denoted by
WLSDS : 

 

                      
( 1 ) / 2

1

( 1 ) / 2 /

n

W L S D

s

S n s

  



                                  (6) 

 

  We want to select discriminative scales of WLSD among the whole number of scales 

shown in Equation (6), and combine the selected scales to be the final effective features. 

Motivated by the feature selection theory, we view the scale selection as a feature selection 

problem and use the idea of Sequential Forward Selection (SFS) [36]. First, we define the 

feature evaluation criterion according to specific application situation, and then select the 

scale in the candidate set that can improve the defined criterion iteratively until the criterion 

stops improving. It should be noted that the scales selected by SFS may be not the optimal, 

but it is relatively more time-saving than many other complicated algorithms, and is very 

efficient which can be verified by the experiment. 

One of the problem above is that, the feature dimension will expand as the iterative times 

increase, then the shape matching computation will also increase. To overcome the above 

computation problem, we operate directly on the distance matrix instead of calculating the 

combined features. Suppose there are M training shapes, then the distance matrix is
M MD , 

whose elements are the distance between each pair of shapes. Suppose each contour is 

uniformly sampled by 200 points, according to Equation (6), the size of the initial candidate 

set
WLSDS is 473, we denote them by: 

1 1 1 2 1 99

2 1 2 2 2 49

99 1

, ,..., ,

, ,..., ,

...

  

  



D D D

D D D

D

 

The subscript of D is in accordance with that of
s wWLSD 

, it can be simplified denoted by

1 2{ , , ... , , ... , }
WLSDl SD D D D . The WLSD scale selection algorithm steps are shown as Table 1: 

 
Table 1. WLSD Scale Selection Algorithm 

WLSD Scale Selection Algorithm 

Initialize: define the evaluation criterion ( )J ; 

calculate the candidate distance matrix set 1 2{ , , ... , , ... , }
WLSDl SD D D D ; 

initialize the selected distance matrix set 0 W , selected scale L , and the 

iterative counter 0k  ; 

while 1 

    Select the distance matrix argmax( ( ))
k kl k lJ D W D in the candidate set; 
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    if ( ) ( )
kk l kJ J W D W or

WLSDk S  stop iteration; 

    else 

add
kl to the selected scale L ; 

         update the selected set 1 kk k l  W W D ; 

         remove
kl

D from the candidate set; 1k k  ; 

end 

end 

Obtain the effective scales L of
s wWLSD 

. 

   
After the above training procedures, the selected scales are recorded in L . In specific 

application, for example, shape retrieval, we first train the samples to acquire the effective 

WLSD scales, and then compare shapes according to their combination distances of the 

selected WLSD scales. 

4. Experimental Results and Analysis 

In this section, we demonstrate the performance of WLSD in shape retrieval, and compare it 

with other state-of-art methods. We first do experiment in MPEG7 shape database. Others, 

like Kimia’s dataset, is also very popular in shape matching, but it is not suitable for training 

since its size is relatively small (Kimia’-99 dataset has 99 shapes with 11 shapes per 

category). Therefore, we choose the Tari dataset [21]. In the MPEG-7 dataset, we further 

conduct some specific analysis experiments, including the computation complexity analysis, 

the stability of the scale selection algorithm and the effectiveness of WLSD in comparison 

with CAF. 

In the following experiments, the retrieval rate is measured by the so-called bull’s eye 

score. Let t be the number of shapes of the same class. Every shape in the database is 

compared to all other shapes, and the number of shapes from the same class among the 2t

most similar shapes is reported. The bull’s eye retrieval rate is the ratio of the total number 

of shapes from the same class to the highest possible number (in MPEG7 is 20×1400). We 

apply the five-fold cross validation to demonstrate the performance of WLSD. The dataset is 

divided into five folds, one split for validation and the others for training. Note that each 

validation fold is tested on the whole dataset using the scales obtained from the 

corresponding four training splits, consequently, the combination of the five validation folds’ 

performance will include retrieval result of all the dataset samples. 

Each contour is uniformly sampled by 200 points, according to Equation (6), the number 

of the initial candidate set
WLSDS is 473. The experimental environment is Matlab 7.11.0, and 

the experimental platform is Intel(R) Core(TM) 2 Duo CPU, 2.53 GHz. 

4.1 MPEG-7 dataset 

4.1.1 Comparison with existing methods 

MPEG-7 CE-Shape-1 Part B dataset is widely used in shape retrieval, it consists of total 
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1400 shapes, having 70 shape classes, and each class owns 20 pictures. The database is 

challenging due to the presence of much distortion and examples that are visually dissimilar 

from other members of their class and highly similar to members of other classes. The first 

example of each class is shown in Fig. 5: 

 

Fig. 5. Examples of MPEG-7 shape dataset 

 

  The bull’s eye score is compared by the recently popular 13 shape analysis algorithms. 

From Table 2, it can be seen that the bull’s eye score of WLSD performs better than all the 

other methods, including multi-scale methods-[6][29][30]. Moreover, WLSD is much more 

efficient than all the methods listed on the table. In real application, after the scale selection 

and the feature extraction of the database having been done offline, the time complexity of 

shape retrieval using WLSD is only the time costs by feature extraction of the query shape, 

and the number of selected scales 2 distance computation of the 24-dimension vectors. 

Under the above experimental environment, the pairwise shape matching time of WLSD is 

only 2.2ms with 200n  , where n is the number of contour points. 

Considering the methods whose retrieval rate are above 85% listed on the table. 

Hierarchical Procrustes reports 300ms taken by matching two shapes [6]. The computation 

of pair-wise similarity between two shapes in Symbolic takes 76.5ms on average, with the 

contours represented by 100 points [33]. Shape L’ Â ne Rouge estimates the density takes on 

average 2 to 3 minutes per shape, which is also much time consuming than WLSD [7]. With 

100 points, IDSC reports 0.31s on a 2.8G PC implemented by optimized Matlab code [5]. 

The main reasons of time saving of WLSD are two points, one is that WLSD is a global 

shape descriptor which is much faster than local descriptors that depend on local matching; 

the other is that WLSD is intrinsically extended to multi-scale without extra extension load, 

such as filtering the contour used in [18][29]. 

 
Table 2. Comparison of bull’s eye score on MPEG-7 dataset 

Algorithms Score(%) 

Hierarchical Procrustes [6] 86.35 

Symbolic [33] 85.92 

Shape L’Ane Rouge [7] 85.25 

IDSC [5] 85.40 

Multi-scale Representation [29] 84.93 

Polygonal Multi-resolution [30] 84.33 

DSW [31] 82.13 

Generative Models [19] 80.03 

CPDH [9] 76.56 

ASD & CCD [32] 76.20 

SC [4] 76.51 

CSS [18] 75.44 

PAF [34] 74.36 

WLSD 86.65 
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4.1.2 Experiments of the single scale WLSD 

  We first test the effectiveness of the single scale WLSD by showing its bull’s eye retrieval 

rate of each scale in Fig. 6 (a). Because of the relation of
sWLSD and

wWLSD , the scales 

mainly spread near the coordinates. The highest score of single scale is 58.30%, with the 

corresponding scale is
10 5WLSD 

, while lowest score is only 33.16%. The results show that 

the performance of single scale WLSD is not satisfactory. Consequently, the multi-scale 

fusion is necessary so that different scales that contain different information about the 

contour variation can make good combination.  

From Fig. 6 (a), it can be seen that the outstanding scales of WLSD are mainly focused on 

the low scales relatively, because the score peaks are grouped around the original point. The 

trends begin to decrease as the scales become larger.  

We also want to observe the performance of
sWLSD and

wWLSD respectively. So in Fig. 6 

(b), the front and the left elevation of Fig.6 (a), the illustration of
sWLSD and

wWLSD , are 

drawn respectively. It illustrates that the outstanding scales of
sWLSD are mainly range from 

10 to 40, and the counterpart of
wWLSD , which are relatively lower, range from 1 to 20. 

Moreover, the scores of
sWLSD are obviously higher than those of wWLSD on average. It is 

precisely able to explain the characteristic of distribution of the selected scales, which we 

will show in the following multi-scale experiment. 

Although it seems
sWLSD performs better than

wWLSD , however, it does not mean that

wWLSD is not important, as it can be seen from Fig. 6 (a) that only after
wWLSD starts to grow 

can the
s wWLSD 

reaches a jump increasing performance. It proves that
sWLSD and

wWLSD

have good combination, and wWLSD makes necessary supplement to sWLSD . 

 
(a)                                      (b) 

Fig. 6. (a) The retrieval rate of the single scale WLSD 

                        (b) The front and left elevation of Fig.6 (a)  

4.1.3 Experiments of the multi-scale WLSD 

  In the first experiment in this section, we will demonstrate the effectiveness of the 

multi-scale integration. First, the detail of the iteration performance is discussed. In Fig. 7 (a), 

the curve shows that the retrieval rate increases by iteration using WLSD in MPEG-7. It 

demonstrates that the power of a single scale WLSD is not very satisfactory but the score 

increases shapely by 73.41% just after the second iteration. The retrieval rate arrives more 
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than 80% with less than 4 scales and reaches above 85% with less than 8 scales, which 

shows the efficiency of the SFS. Finally, after ten iterations, the performance is relatively 

stable. 

 

 
(a)                                      (b) 

Fig. 7. (a) The improvement trend of the retrieval rate by the increase of the iteration times 

(b) The first five selected scales of each training set in MPEG-7 

 

Then, we demonstrate the effectiveness of Weber’s Law applied to WLSD, the experiment 

using only the CAF is conducted and the result is also shown in Fig. 7 (a). The highest score 

obtained by CAF is 80.59%, which is much lower than WLSD. But the trend of the 

increasing retrieval rate is similar to that of WLSD. Therefore, WLSD can dramatically 

improve the discriminative performance compared with only CAF. The main reason is that 

CAF only has the multi-scale information of a shape contour, whereas WLSD can describe 

more than that with the saliency variation which implicitly indicates the relation between the 

contour points. The same increasing trend of the curve shown in Fig. 7 (a) also indicates that 

the multi-scale selection motivated by SFS is efficient and stable. 

The distribution of the first several selected scales is further observed. Fig. 7 (b) illustrates 

the first five selected scales of the five-fold subsets, where the indication color is orderly 

green, blue, red, white and magenta. It can be seen that the variance of the selected scale 

becomes larger as the number of iteration increases, and the variance along
sWLSD varies 

more dramatically than that of wWLSD . So the lower scales of s wWLSD 
are relatively more 

stable. 

  In the second experiment, we analysis the WLSD scale distribution. The selected scales of 

five folds are shown in Fig. 8 (a) ~ (e) respectively, where the yellow area is all the possible 

WLSD scales and the green dots represent the selected scales. It is illustrated that the 

effective scales of wWLSD are mainly the lower scales between 1~16. Even though the scales 

of sWLSD spread relatively scattered, they are more concentrated among 1~20, despite of 

some sparse high scales. We conclude that the discriminative scales of
s wWLSD 

mainly 

concentrate in lower scales while higher scales make effective complement. 

  The scales of retrieval rate more than 50% are shown in Fig. 8 (f) in blue dots. Compared 

with the selected scales in Fig. 8 (a) ~ (e), the outstanding individual scales (we call them 

OIS) are more concentrated. We also find that many selected scales are not in the OIS set 

although the first selected scales are mainly in the OIS domain. Consequently, less 

outstanding scales are also very important since they make necessary supplement to the OIS. 
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(a)                                      (b) 

 
(c)                                     (d) 

  
(e)                                       (f) 

Fig. 8. (a) ~ (e): The distribution of the selected scales of each training set in MPEG-7 

(f): The scales of retrieval rate more than 50% in MPEG-7 

 

In the third experiment, we demonstrate the robustness of the proposed scale selection 

algorithm. In Fig. 9 (a), the accumulation of the selected scales of the five training sets are 

illustrated. Compared with Fig. 7 (b), as more scales are included, the scales of sWLSD spread 

more uniformly than wWLSD . It can be explained that once the high
sWLSD scale is selected, 

the high wWLSD scale is not necessary to some extent, or in another way, high wWLSD scales 

are not as discriminative as the lower ones. We also want to conduct the quantitative analysis 

of the variation of the selected scales. Consequently, in Fig. 9 (b), the variance of the first ten 
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selected scales of the training sets are illustrated. From the first two figures, it can be seen 

that the variance of the first several selected scales of both
sWLSD and

wWLSD are very stable. 

Although there are some fluctuations in higher scales, the whole stability is satisfactory. We 

conclude that the proposed scale selection algorithm is stable in the dominant discriminative 

scales and have acceptable variation in the complementary scales.  

As shown in Fig. 9 (b), 
wWLSD is relatively more stable than

sWLSD . Although
sWLSD

performs better than
wWLSD , 

wWLSD has made more contribution in the stability of the 

whole
s wWLSD 

. We further draw the conclusion that
sWLSD dominates the discriminability 

and
wWLSD not only provides necessary supplement but also makes

s wWLSD 
more stable. 

Therefore, it demonstrates again the close relation between
sWLSD and

wWLSD . 

 
(a)                                      (b) 

Fig. 9. (a) The accumulation of the first ten selected scale of the training sets 

           (b) The variance of the first ten selected scales 

 

4.2 Tari dataset 

To demonstrate the WLSD can also handle articulated shapes, we test it on relatively new 

Tari dataset, which consists of 1000 binary images from 50 shape categories, each category 

has 20 images. It is designed to have large intra-class shape deformation and many shapes 

are articulated (see Fig. 10.). It has been extended from the original 180 images [21] to do 

the shape skeleton research [22]. 

 

 
Fig. 10. Examples of Tari dataset 

 

  We also adopt the bull’s eye score here, since the scores reported in this dataset are not as 

much as that in MPEG-7, the number of the compared algorithms are relatively small (as 

shown in Table 3). 

 
Table 3. Comparison of bull’s eye score on Tari dataset 

Algorithm IDSC [5] COP [26] SPM [35] DSW [31] WLSD 

Score(%) 95.33 92.18 91.37 81.60 93.09 
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  From Table 3, IDSC scores higher than WLSD since it is designed to handle articulated 

shapes and is insensitive to articulation. Overall, WLSD is comparable to the listed methods, 

which prove the proposed method can handle articulated shapes well. Note the compared 

methods are also much more time-consuming than WLSD since their local property or local 

matching scheme. 

 
(a)                                      (b) 

Fig. 11. (a) The curve shows the retrieval rate increases by iteration in Tari 

(b) The distribution of the selected scales of WLSD in Tari 

 

  The iteration plot and the distribution of scales are illustrated in Fig. 11. The curve shows 

that after the second iteration, the retrieval rate increases significantly and begins 

approaching to the final rate. The selected scales cluster in lower scales and disperse in the 

higher scales. Both of the figures are in accordance with the test in MPEG-7 dataset, which 

demonstrates the discussion and conclusion in MPEG-7 experiment section, and shows the 

stability of the proposed method. 

  In Fig. 12, it shows that the variance of
wWLSD is much more stable than

sWLSD . Compared 

with Fig. 9 (b), the average variance of s wWLSD 
here is less variable, which can be explained 

that the Tari dataset has less distortion than MPEG7. In summary, it has the same variation 

feature as that of MPEG7. It demonstrates again the robustness of the scale selection method. 

 

 
Fig. 12. The variance of the first ten selected scales 

 

  As described in the Abstract and Section 3.2.1, both the CAF and WLSD are insensitive to 

rotation and scale variation, we now demonstrate this property in the last experiment. We 
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conduct the experiment by rotating the Tari dataset to 30 , 60 , 90 clockwise, and scale the 

dataset to 0.5, 1.5 and 2 as well. The test result is shown in Table 4. From the table, it can be 

seen that the rotated and the scaled scores are nearly the same to the original ones (the 

rotation 0 and scale 1), which demonstrates CAF and WLSD are robust to rotation and scale 

variation. We also find that some scores are even higher than the original, which may 

because of the dataset itself or the de-noising operation in the image transform. The scores of 

1.5 and 2 scale transform are lower than that of 0.5 can validate this discussion. 

 
Table 4. Bull’s eye score on rotated and scaled Tari dataset 

transform 
Rotation Scale 

0  30  60  90  1 0.5 1.5 2 

WLSD 93.09 93.27 93.64 93.12 93.09 93.65 93.02 92.83 

CAF 87.35 88.86 88.76 87.77 87.35 89.09 87.67 86.35 

5. Conclusion 

In this paper we propose a new shape descriptor based on Weber’s Law, named Weber’s Law 

Shape Descriptor (WLSD). The key idea of WLSD is to capture the salient variation of a 

shape contour to stimulate human perception. We first design Contour Angular Feature (CAF) 

to construct the original stimulus intensity and propose WLSD according to Weber’s Law 

Equation, and then develop the WLSD to multi-scale as well as demonstrate the necessity of 

the multi-scale extension, finally, the feature selection framework is applied to the 

multi-scale WLSD to extract discriminative scales. The experiments show the effectiveness 

and the outstanding efficiency of WLSD. 

The future work is notable from the theory foundation of WLSD, since Weber’s Law is 

instinctively associated with saliency. Therefore, we plan to enhance the selection scheme to 

select the salient WLSD that stimulate human views to further improve the discriminative 

ability. 
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