References
- 김대성, 김형태, 2008. 누적 유사도 측정을 이용한 자동 임계값 결정 기법 -다중분광 및 초분광영상의무감독 변화탐지를 목적으로, 대한원격탐사학회지, 24(4):341-349.
- 김선화, 이규성, 마정림, 국민정, 2005. 초분광 원격탐사의 특성, 처리기법 및 활용 현황, 대한원격탐사학회지, 21(4):341-369.
- 신정일, 2012. 초분광영상에 대한 지표물 탐지 알고리즘의 적용성 비교 및 성능 개선, 인하대학교 박사학위 논문.
- 신정일, 김선화, 윤정숙, 김태근, 이규성, 2006. 도시지역의 수문학적 토지피복 분류를 위한 초분광영상의 분광혼합분석, 대한원격탐사학회지, 22(6): 565-574. https://doi.org/10.7780/kjrs.2006.22.6.565
- Anselin, L., 1995. Local indicators of spatial association-LISA, Geographical Analysis, 27(2): 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
- Banerjee, A., P. Burlina, and C. Diehl, 2006. A support vector method for anomaly detection in hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2282-2291. https://doi.org/10.1109/TGRS.2006.873019
- Bruce, L.M., C.H. Koger, and J. Li, 2002. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction, IEEE Transactions on Geoscience and Remote sensing, 40(10): 2331-2338. https://doi.org/10.1109/TGRS.2002.804721
- Camps-Valls, G. and L. Bruzzone, 2005. Kernelbased methods for hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, 43(6): 1351-1362. https://doi.org/10.1109/TGRS.2005.846154
- Chang, C.-I., 2007. Hyperspectral Data Exploitation: Theory and Applications, Wiley.
- Chang, C.-I. and S.-S. Chiang, 2002. Anomaly detection and classification for hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, 40(6): 1314-1325. https://doi.org/10.1109/TGRS.2002.800280
- Chen, Z. and R. Ning, 2004. Breast volume denoising and noise characterization by 3D wavelet transform, Computerized Medical Imaging and Graphics, 28(5): 235-246. https://doi.org/10.1016/j.compmedimag.2004.04.004
- Cheung, N., C. Tang, A. Ortega, and C.S. Raghavendra, 2006. Efficient wavelet-based predictive Slepian-Wolf coding for hyperspectral imagery, Signal Processing, 86(11): 3180-3195. https://doi.org/10.1016/j.sigpro.2006.03.016
- Cochrane, M.A., 2000. Using vegetation reflectance variability for species level classification of hyperspectral data, International Journal of Remote Sensing, 21(10): 2075-2087. https://doi.org/10.1080/01431160050021303
- Davis, J.C., 1986. Statistics and Data Analysis in Geology. Wiley.
- Deutsch, C.V. and A.G. Journel, 1998. GSLIB: Geostatistical Software Library and User's Guide, 2nd Edition, Oxford University Press.
- Ghugre, N.R., M. Martin, M. Scadeng, S. Ruffins, T. Hiltner, R. Pautler, C. Waters, C. Readhead, R. Jacobs, and J.C. Wood, 2003. Superiority of 3D wavelet-packet denoising in MR microscopy, Magnetic Resonance Imaging, 21(8): 913-921. https://doi.org/10.1016/S0730-725X(03)00191-7
- Goovaerts, P., G.M. Jacquez, and A. Marcus, 2005. Geostatistical and local cluster analysis of high resolution hyperspectral imagery for detection of anomalies, Remote Sensing of Environment, 95(3): 351-367. https://doi.org/10.1016/j.rse.2004.12.021
- Gu, Y., Y. Liu, and Y. Zhangm, 2008. A selective KPCA algorithm based on high-order statistics for anomaly detection in hyperspectral imagery, IEEE Geoscience and Remote Sensing Letters, 5(1): 43-47. https://doi.org/10.1109/LGRS.2007.907304
- Igamberdiev, R.M., G. Renzdoerffer, R. Bill, H. Schubert, M. Bachmann, and B. Lennartz, 2011. Determination of chlorophyll content of small water bodies (kettle holes) using hyperspectral airborne data, International Journal of Applied Earth Observation and Geoinformation, 13(6): 912-921. https://doi.org/10.1016/j.jag.2011.04.001
- Kurz, T.H., J. Dewit, S.J. Buckley, J.B. Thurmond, and D.W. Hunt, 2012. Hyperspectral image analysis of different carbonate lithologies (limestone, karst and hydrothermal dolomites): the Pozalagua Quarry case study (Cantabria, North-west Spain), Sedimentology, 59(2): 623-645. https://doi.org/10.1111/j.1365-3091.2011.01269.x
- Kwon, H. and N.M. Nasrabadi, 2005. Kernel RXalgorithm: a nonlinear anomaly detector for hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, 43(2): 388-397. https://doi.org/10.1109/TGRS.2004.841487
- Lillesand, T.M., R.W. Kiefer, and J.W. Chipman, 2008. Remote Sensing and Image Interpretation, 6th Edition, Wiley.
- Luo, L., F. Wu, S. Li, Z. Xiong, and Z. Zhuang, 2004. Advanced motion threading for 3D wavelet video coding, Signal Processing: Image Communication, 19(7): 601-616. https://doi.org/10.1016/j.image.2004.05.004
- Manolakis, D. and G. Shaw, 2002. Detection algorithms for hyperspectral imaging applications, IEEE Signal Processing Magazine, 19(1):29-43. https://doi.org/10.1109/79.974724
- Melgani, F. and L. Bruzzone, 2004. Classification of hyperspectral remote sensing images with support vector machines, IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1778-1790. https://doi.org/10.1109/TGRS.2004.831865
- Nunez, J., X. Otazu, O. Fors, A. Prades, V. Pala, and R. Arboiol, 1999. Multiresolution-based image fusion with additive wavelet decomposition, IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1204-1211. https://doi.org/10.1109/36.763274
- Otazu, X., M. Gonzales-Audicana, O. Fors, and J. Nunez, 2005. Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods, IEEE Transactions on Geoscience and Remote Sensing, 43(10): 2376- 2385. https://doi.org/10.1109/TGRS.2005.856106
- Plaza, A., P. Martínez, J. Plaza, and R. Pérez, 2005. Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations, IEEE Transactions on Geoscience and Remote Sensing, 43(3): 466-479. https://doi.org/10.1109/TGRS.2004.841417
- Reed, I.S. and X. Yu, 1990. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Transactions on Acoustic, Speech and Signal Processing, 38(10): 1760-1770. https://doi.org/10.1109/29.60107
- Roessner, S., K. Segl, U. Heiden, and H. Kaufmann, 2001. Automated differentiation of urban surfaces based on airborne hyperspectral imagery, IEEE Transactions on Geoscience and Remote sensing, 39(7): 1525-1532. https://doi.org/10.1109/36.934082
- Stein, D., S. Beaven, L. Hoff, E. Winter, A. Schaum, and A. Stocker, 2002. Anomaly detection from hyperspectral imagery, IEEE Signal Processing Magazine, 19(1): 58-69. https://doi.org/10.1109/79.974730
- Swets, J.A., 1988. Measuring the accuracy of diagnostic systems, Science, 240(4857): 1285- 1293. https://doi.org/10.1126/science.3287615
- Yoo, H.Y., K. Lee, and B.D. Kwon, 2007. Application of the 3D discrete wavelet transformation scheme to remotely sensed image classification, Korean Journal of Remote Sensing, 23(5): 355- 363. https://doi.org/10.7780/kjrs.2007.23.5.355
- Yoo, H.Y., K. Lee, and B.D. Kwon, 2009. Quantitative indices based on 3D discrete wavelet transform for urban complexity estimation using remotely sensed imagery, International Journal of Remote Sensing, 30(23): 6219-6239. https://doi.org/10.1080/01431160902842359
Cited by
- The Impacts of Decomposition Levels in Wavelet Transform on Anomaly Detection from Hyperspectral Imagery vol.28, pp.6, 2012, https://doi.org/10.7780/kjrs.2012.28.6.3