• Title/Summary/Keyword: Global Search

Search Result 853, Processing Time 0.02 seconds

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.

Development of a Multi-objective function Method Based on Pareto Optimal Point (Pareto 최적점 기반 다목적함수 기법 개발에 관한 연구)

  • Na, Seung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.175-182
    • /
    • 2005
  • It is necessary to develop an efficient optimization technique to optimize the engineering structures which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of engineering structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points by spreading point randomly entire the design spaces. In this paper, a Pareto optimal based multi-objective function method (PMOFM) is developed by considering the search direction based on Pareto optimal points, step size, convergence limit and random search generation . The PMOFM can also apply to the single objective function problems, and can consider the discrete design variables such as discrete plate thickness and discrete stiffener spaces. The design results are compared with existing Evolutionary Strategies (ES) method by performing the design of double bottom structures which have discrete plate thickness and discrete stiffener spaces.

A FILLED FUNCTION METHOD FOR BOX CONSTRAINED NONLINEAR INTEGER PROGRAMMING

  • Lin, Youjiang;Yang, Yongjian
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.985-999
    • /
    • 2011
  • A new filled function method is presented in this paper to solve box-constrained nonlinear integer programming problems. It is shown that for a given non-global local minimizer, a better local minimizer can be obtained by local search starting from an improved initial point which is obtained by locally solving a box-constrained integer programming problem. Several illustrative numerical examples are reported to show the efficiency of the present method.

GLOBAL CONVERGENCE PROPERTIES OF TWO MODIFIED BFGS-TYPE METHODS

  • Guo, Qiang;Liu, Jian-Guo
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.311-319
    • /
    • 2007
  • This article studies a modified BFGS algorithm for solving smooth unconstrained strongly convex minimization problem. The modified BFGS method is based on the new quasi-Newton equation $B_k+1{^s}_k=yk\;where\;y_k^*=yk+A_ks_k\;and\;A_k$ is a matrix. Wei, Li and Qi [WLQ] have proven that the average performance of two of those algorithms is better than that of the classical one. In this paper, we prove the global convergence of these algorithms associated to a general line search rule.

Loss Minimization In Distribution Systems Using Reactive Tabu Search (Reactive Tabu Search 알고리즘을 이용한 배전계통의 손실 최소화)

  • 최상열;장경일;신명철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.80-87
    • /
    • 2003
  • Network reconfiguration in distribution systems is realized by changing the status of sectiona1izing switches, and is usually done for loss minimization or load balancing in the system This parer presents an approach for loss minization in distribution systems using reactive tabu search. Tabu search attempts to determine a better solution in the manner of a greatest-descent algorithm, but it can not give any guarantee for the convergence property. Reactive tabu search can give convergence property by using reaction and escape mechanism. Therefore, it can find global optimal solution regardless of initial system configuration. To demonstrate the validity of the proposed algorithm, numerical calculations are carried out the 32 bus system models.

Improvement of evolution speed of individuals through hybrid reproduction of monogenesis and gamogenesis in genetic algorithms (유전자알고리즘에서 단성생식과 양성생식을 혼용한 번식을 통한 개체진화 속도향상)

  • Jung, Sung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.45-51
    • /
    • 2011
  • This paper proposes a method to accelerate the evolution speed of individuals through hybrid reproduction of monogenesis and gamogenesis. Monogenesis as a reproduction method that bacteria or monad without sexual distinction divide into two individuals has an advantage for local search and gamogenesis as a reproduction method that individuals with sexual distinction mate and breed the offsprings has an advantages for keeping the diversity of individuals. These properties can be properly used for improvement of evolution speed of individuals in genetic algorithms. In this paper, we made relatively good individuals among selected parents to do monogenesis for local search and forced relatively bad individuals among selected parents to do gamogenesis for global search by increasing the diversity of chromosomes. The mutation probability for monogenesis was set to a lower value than that of original genetic algorithm for local search and the mutation probability for gamogenesis was set to a higher value than that of original genetic algorithm for global search. Experimental results with four function optimization problems showed that the performances of three functions were very good, but the performances of fourth function with distributed global optima were not good. This was because distributed global optima prevented individuals from steady evolution.

Nonlinear control system using universal learning network with random search method of variable search length

  • Shao, Ning;Hirasawa, Kotaro;Ohbayashi, Masanao;Togo, Kazuyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.235-238
    • /
    • 1996
  • In this paper, a new optimization method which is a kind of random searching is presented. The proposed method is called RasVal which is an abbreviation of Random Search Method with Variable Seaxch Length and it can search for a global minimum based on the probability density functions of searching, which can be modified using informations on success or failure of the past searching in order to execute intensified and diversified searching. By applying the proposed method to a nonlinear crane control system which can be controlled by the Universal Learning Network with radial basis function(R.B.P.), it has been proved that RasVal is superior in performance to the commonly used back propagation learning algorithm.

  • PDF

Optimal Environmental and Economic Operation using Evolutionary Computation and Neural Networks (진화연산과 신경망이론을 이용한 전력계통의 최적환경 및 경제운용)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;You, Seok-Ku
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1498-1506
    • /
    • 1999
  • In this paper, a hybridization of Evolutionary Strategy (ES) and a Two-Phase Neural Network(TPNN) is applied to the optimal environmental and economic operation. As the evolutionary computation, ES is to search for the global optimum based on natural selection and genetics but it shows a defect of reducing the convergence rate in the latter part of search, and often does not search the exact solution. Also, neural network theory as a local search technique can be used to search a more exact solution. But it also has the defect that a solution frequently sticks to the local region. So, new algorithm is presented as hybrid methods by combining merits of two methods. The hybrid algorithm has been tested on Emission Constrained Economic Dispatch (ECED) problem and Weighted Emission Economic Dispatch (WEED) problem for optimal environmental and economic operation. The result indicated that the hybrid approach can outperform the other computational efficiency and accuracy.

  • PDF

A LINE SEARCH TRUST REGION ALGORITHM AND ITS APPLICATION TO NONLINEAR PORTFOLIO PROBLEMS

  • Gu, Nengzhu;Zhao, Yan;Gao, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.233-243
    • /
    • 2009
  • This paper concerns an algorithm that combines line search and trust region step for nonlinear optimization problems. Unlike traditional trust region methods, we incorporate the Armijo line search technique into trust region method to solve the subproblem. In addition, the subproblem is solved accurately, but instead solved by inaccurate method. If a trial step is not accepted, our algorithm performs the Armijo line search from the failed point to find a suitable steplength. At each iteration, the subproblem is solved only one time. In contrast to interior methods, the optimal solution is derived by iterating from outside of the feasible region. In numerical experiment, we apply the algorithm to nonlinear portfolio optimization problems, primary numerical results are presented.

  • PDF

Large Scale Unit Commitment Using Parallel Tabu Search (병렬 타부 탐색법을 이용한 대규모의 발전기 기동정지계획)

  • Kim, Hyeong-Su;Mun, Gyeong-Jun;Jo, Deok-Hwan;Hwang, Gi-Hyeon;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.11
    • /
    • pp.528-536
    • /
    • 2001
  • This paper proposes a method of solving a unit commitment problem using parallel tabu search(PTS) approach. Tabu search is a heuristic optimization method that has the tabu list to control the search process. To improve the searching ability of a global solution, we used a method of exchanging solutions among connected processors as a diversification strategy, and to reduce the computation time, a new evaluating method was proposed which evaluates only a changed par. To show the usefulness of the proposed method, we simulated for 10 units system and 110 units system. Numerical results show improvements in the generation costs and the computation time compared with other conventional methods.

  • PDF