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A FILLED FUNCTION METHOD FOR BOX CONSTRAINED

NONLINEAR INTEGER PROGRAMMING

Youjiang Lin and Yongjian Yang

Abstract. A new filled function method is presented in this paper to
solve box-constrained nonlinear integer programming problems. It is
shown that for a given non-global local minimizer, a better local min-

imizer can be obtained by local search starting from an improved initial
point which is obtained by locally solving a box-constrained integer pro-
gramming problem. Several illustrative numerical examples are reported

to show the efficiency of the present method.

1. Introduction

In [13], Zhu showed that over unbounded domain, the integer programming
is undecidable; i.e., there cannot be any algorithm for the problem. So we
consider the following box-constrained discrete global optimization problem:

min{f(x) : x ∈ X ⊂ Zn},(1.1)

where f : Zn → R, and Zn is the set of integer points in Rn, and X is box; i.e.,
X = {x ∈ Zn : a ≤ x ≤ b, a, b ∈ Zn}.

Like the continuous global optimization problems, the existence of multiple
local minima of a general nonconvex objective function makes discrete global
optimization a great challenge. For continuous global optimization problems,
many deterministic methods (see [1], [7], [8], [10]) have been proposed to search
for a globally optimal solution of a function of several variables. The filled
function algorithm (see [2], [4]) is an effective and practical method among
determinate algorithms. The primary filled function was proposed by Ge in
paper [2]. The definition of the filled function is as follows:

Definition 1.1. Assume that x∗
1 is a current minimizer of f(x). A continuous

function P (x) is said to be a filled function of f(x) at x∗
1 if it satisfies the

following properties:
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(1) x∗
1 is a maximizer of P (x) and the whole basin B∗

1 of f(x) at x∗
1 becomes

a part of a hill of P (x);
(2) P (x) has no minimizers or saddle points in any higher basin of f(x)

than B∗
1 ;

(3) If f(x) has a lower basin than B∗
1 , then there is a point x′ in such a

basin that minimizes P (x) on the line through x and x∗
1.

For the definitions of basin and hill, refer to Ge (1990), paper [2].
The filled function given at x∗

1 in the paper [2] has the following form:

(1.2) P (x, x∗
1, r, ρ) =

1

r + f(x)
exp

(
−∥x− x∗

1∥2

ρ2

)
,

where the parameters r and ρ need to be chosen appropriately.
The main idea of the filled function method is to construct an auxiliary func-

tion called filled function via the current local minimizer of the original opti-
mization problem, with the property that the current local minimizer is a local
maximizer of the constructed filled function and a better initial point of the
primal optimization problem can be obtained by minimizing the constructed
filled function locally. By the same idea as that of solving continuous global
optimization problems, We try to solve discrete global optimization problem
(1.1).

In [3], Ge adapted the filled function method by Ge [2] for continuous global
optimization to the discrete case. However, the filled function algorithm de-
scribed in the paper [2] still has some unexpected features:

(i) The efficiency of the filled function algorithm strongly depend on two
parameters r and q. They are not so easy to be adjusted to make them satisfy
the needed conditions;

(ii) The filled function includes exponential terms. If the value of 1/ρ be-
comes large as iterations proceed, as required to preserve the filling property,
numerical illness may result in failure of computation;

(iii) The termination criteria is not good because it requires a large amount
of computation before a global minimizer has been found.

In this paper, we provide a new definition of the discrete filled function, and
a discrete filled function satisfying the definition is presented. An algorithm
is developed from the new filled function. The new filled function algorithm
overcomes the disadvantages mentioned above in a certain extent. Specifically,
it has the following several advantages:

(i) The new filled function includes neither exponential terms nor logarithmic
terms. Elementary function ϕ(t) = arctant is used in the filled function, which
possesses many good properties and is efficient in numerical implementations.

(ii) The parameters q and r in the new filled function are easier to be ap-
propriately chosen than those of the original filled function (1.2).

(iii) The new algorithm has a simple termination criteria and the compu-
tational results show that this algorithm is more efficient than the original
algorithm.
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The rest of this paper is organized as follows. In Section 2, we first re-
call some definitions in discrete analysis and discrete optimization. In Section
3, a definition of discrete filled function is given, a discrete filled function is
presented, and we investigate its properties. An algorithm is developed and
numerical experiments are presented in Section 4. Finally, some conclusions
are drawn in Section 5.

2. Preliminary

First, we recall some definitions in discrete analysis and discrete optimization
(see [11], [12]).

Definition 2.1. A sequence {xi}ui=−1 is called a discrete path in X between

two distinct point x∗ and x∗∗ in X if x−1 = x∗, xu = x∗∗, xi ∈ X for all i;
xi ̸= xj for i ̸= j; and ∥x0 − x∗∥ = ∥xi+1 − xi∥ = ∥x∗∗ − xu−1∥ = 1 for all i. If
such a discrete path exists, then x∗ and x∗∗ are said to be pathwise connected
in X. Furthermore, if every two distinct points in X are pathwise connected
in X, then X is called a pathwise connected set.

Definition 2.2. The set of all axial directions in Zn is defined by D = {±ei :
i = 1, 2, . . . , n}, where ei is the ith unit vector; The set of all feasible directions
at x ∈ X is defined by Dx = {d ∈ D : x+ d ∈ X}, where D is the set of axial
directions.

Definition 2.3. For any x ∈ Zn, the discrete neighborhood of x is defined by
N(x) = {x, x ± ei : i = 1, 2, . . . , n}; The discrete interior of X is defined by
int X = {x ∈ X : N(x) ⊆ X}. While, the discrete boundary of X is denoted
by ∂X = X/ int X.

Definition 2.4. A point x∗ ∈ X is called a discrete local minimizer of f over
X if f(x∗) ≤ f(x) for all x ∈ X ∩ N(x∗). If, in addition, f(x∗) < f(x) for
all x ∈ X ∩ N(x∗)/{x∗}, then x∗ is called a strict discrete local minimizer of
over X; A point x∗ ∈ X is called a discrete global minimizer of f over X if
f(x∗) ≤ f(x) for all x ∈ X. If, in addition, f(x∗) < f(x) for all x ∈ X, then
x∗ is called a strict discrete global minimizer of f over X.

Definition 2.5. For any x ∈ X, d ∈ D is said to be a discrete descent direction
of f at x over X if x+ d ∈ X and f(x+ d) < f(x); beside, d∗ ∈ D is called a
discrete steepest descent direction of f at x over X if f(x+ d∗) ≤ f(x+ d) for
all d ∈ D∗, where D∗ is the set of all descent direction of f at x over X.

Algorithm 2.6. (Discrete steepest descent method).
1. Start from the initial point x ∈ X.
2. If x is a local minimizer of f over X, then stop. Otherwise, a discrete

steepest descent direction d∗ of f at x over X can be found.
3. Let x := x + λd∗, where λ ∈ Z+ is the step length such that f has

maximum reduction in direction d∗, and go to Step 2.
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Algorithm 2.7. (Modified discrete descent method).
1. Start from the initial point x ∈ X.
2. If x is a local minimizer of f over X, then stop. Otherwise, let

d∗ = argmin{f(x+ di) : di ∈ Dx, f(x+ di) < f(x)},
where Dx denotes the set of feasible directions at x.

3. Let x := x+ d∗, and go to Step 2.

Obviously, by Algorithms 2.6 and 2.7, we can only find a discrete local
minimizer.

Finally, for the discrete global optimization problem (1.1), we make the
following assumptions in this paper:

Assumption 2.8. X ⊆ Zn is a bounded set which contains more than one
point. This implies that there exists a constant K > 0 such that

1 ≤ K = max
x,y∈X

∥x− y∥ ≤ ∞,

where ∥ · ∥ is the usual Euclidean norm.

Assumption 2.9. f :
∪

x∈X N(x) → R satisfies the following Lipschiz condi-
tion for every x, y ∈

∪
x∈X N(x):

|f(x)− f(y)| ≤ L∥x− y∥,
where 0 < L <∞ is a constant, N(x) is the discrete neighborhood of x.

3. A filled function and its properties

In this section, we propose a filled function of f(x) at a current local mini-
mizer and discuss its properties. Let

S1 = {x : |f(x) ≥ f(x∗
1), x ∈ X \ {x∗

1}},
S2 = {x|f(x) < f(x∗

1), x ∈ X}.

Definition 3.1. P (x, x∗
1) is called a discrete filled function of f(x) at a discrete

local minimizer x∗
1 if P (x, x∗

1) has the following properties:

(1) x∗
1 is a strict discrete local maximizer of P (x, x∗

1) on X;
(2) P (x, x∗

1) has no discrete local minimizers in the region S1;
(3) If x∗

1 is not a discrete global minimizer of f(x), then P (x, x∗
1) does have

a discrete minimizer in the region S2.

Now, we give a discrete filled function for problem (1.1) at a local minimizer
x∗
1 as follows:

F (x, x∗
1, q, r) =

1

q + ∥x− x∗
1∥

ϕq (max{f(x)− f(x∗
1) + r, 0}) ,(3.1)

where

ϕq(t) =

{
arctan

(
− q

t

)
+ π

2 , if t ̸= 0,
0, if t = 0.

(3.2)
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Figure 1. f(x) = x sinx and F (x, x∗
1, q, r), where q = 0.1,

r = 0.2

q > 0 and r satisfies

0 < r < max
x∗,x∗

1∈L(P )

f(x∗)<f(x∗
1)

(f(x∗
1)− f(x∗))

where L(P ) stand for the set of discrete local minimizers of f(x). A simple
example is given in Figure 1.

Next we will show that the function F (x, x∗
1, q, r) is a discrete filled function

satisfying Definition 3.1 under certain conditions on the parameters q and r.

Theorem 3.2. Suppose that X holds Assumption 2.8. Further suppose that x∗
1

is a discrete local minimizer of f(x). For any r > 0, when q > 0 is satisfactorily
small, x∗

1 is a strict discrete local maximizer of F (x, x∗
1, q, r).

Proof. Since x∗
1 is a discrete local minimizer of f(x) for any x ∈ N(x∗

1) ∩ X,
f(x) ≥ f(x∗

1) and ∥x− x∗
1∥ = 1. Hence, we have

F (x, x∗
1, q, r) =

1

q + 1

(
arctan(− q

f(x)− f(x∗
1) + r

) +
π

2

)
and

F (x∗
1, x

∗
1, q, r) =

1

q

(
arctan(−q

r
) +

π

2

)
,
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when x ≥ y, arctan(x)− arctan(y) ≤ x− y; let q < r, we have

F (x, x∗
1, q, r)− F (x∗

1, x
∗
1, q, r)

=
1

q + 1

(
arctan(− q

f(x)− f(x∗
1) + r

) +
π

2

)
− 1

q

(
arctan(−q

r
) +

π

2

)
=

1

q + 1
arctan(− q

f(x)− f(x∗
1) + r

)− 1

q
arctan(−q

r
) +

−1
q(q + 1)

π

2

=
1

q + 1
×

(
arctan(

q

r
)− arctan(

q

f(x)− f(x∗
1) + r

)

)
+

1

q × (q + 1)

(
arctan(

q

r
)− π

2

)
<

1

q × (q + 1)
×

(
q ×

(
q

r
− q

f(x)− f(x∗
1) + r

)
+
(
arctan 1− π

2

))
=

1

q × (q + 1)
×

(
q2 × f(x)− f(x∗

1)

r × (f(x)− f(x∗
1) + r)

− π

4

)
≤ 1

q × (q + 1)
×

(
q2 × L∥x− x∗

1∥
r2

− π

4

)
=

1

q × (q + 1)
×

(
q2 × L

r2
− π

4

)
≤ 1

q × (q + 1)
×

(
q × L

r
− π

4

)
.

Therefore, when 0 < q < min{r, πr
4L}, we have F (x, x∗

1, q, r)−F (x∗
1, x

∗
1, q, r) <

0 for any x ∈ N(x∗
1)∩X, x∗

1 is a strict discrete local maximizer of F (x, x∗
1, q, r).

□

Lemma 3.3. For every x, x∗ ∈ X, if there exits i ∈ {1, 2, . . . , n} such that
x± ei ∈ X, then there exists d ∈ D such that

∥x+ d− x∗∥ > ∥x− x∗∥.

Proof. If there is an i ∈ {1, 2, . . . , n} such that x ± ei ∈ X, then either ∥x +
ei − x∗∥ > ∥x − x∗∥ or ∥x − ei − x∗∥ > ∥x − x∗∥, therefore we let d = ei or
d = −ei, this completes the proof. □

Theorem 3.4. Suppose that Assumptions 2.8-2.9 are satisfied. If x∗
1 is a

discrete local minimizer of f(x), then the function F (x, x∗
1, q, r) has no discrete

local minimizers in the region S1 = {x|f(x) ≥ f(x∗
1), x ∈ X/{x∗

1}} when r > 0
and q > 0 are satisfactorily small.

Proof. Let X̃ =
∪

x∈X N(x), obviously, X̃ holds Assumptions 2.8-2.9, and we

have S1 ⊆ X ⊆ int X̃. For every x ∈ S1, by Lemma 3.3, there must exists a
direction d ∈ D such that x+ d ∈ X and

∥x+ d− x∗
1∥ > ∥x− x∗

1∥.
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Consider the following two cases:
(1) f(x+ d) ≥ f(x∗

1): Since f(x+ d) ≥ f(x∗
1), we have

F (x+ d, x∗
1, q, r)− F (x, x∗

1, q, r)

=
1

q + ∥x+ d− x∗
1∥

(
arctan(− q

f(x+ d)− f(x∗
1) + r

) +
π

2

)
− 1

q + ∥x− x∗
1∥

(
arctan(− q

f(x)− f(x∗
1) + r

) +
π

2

)
=

1

q + ∥x+ d− x∗
1∥

arctan(− q

f(x+ d)− f(x∗
1) + r

)

− 1

q + ∥x− x∗
1∥

arctan(− q

f(x)− f(x∗
1) + r

)

+
∥x− x∗

1∥ − ∥x+ d− x∗
1∥

(q + ∥x+ d− x∗
1∥)(q + ∥x− x∗

1∥)
π

2

=
1

q + ∥x+ d− x∗
1∥

×
(
arctan(

q

f(x)− f(x∗
1) + r

)− arctan(
q

f(x+ d)− f(x∗
1) + r

)

)
+

∥x+ d− x∗
1∥ − ∥x− x∗

1∥
(q + ∥x+ d− x∗

1∥)(q + ∥x− x∗
1∥)

(
arctan(

q

f(x)− f(x∗
1) + r

)− π

2

)
.

If f(x) > f(x+ d), then

arctan(
q

f(x)− f(x∗
1) + r

)− arctan(
q

f(x+ d)− f(x∗
1) + r

) < 0

therefore when q < r, we have arctan( q
f(x)−f(x∗

1)+r )−
π
2 < 0, hence

F (x+ d, x∗
1, q, r)− F (x, x∗

1, q, r) < 0.

If f(x) ≤ f(x+d) for any x, y ∈ R, when x ≤ y, we have arctan y−arctanx ≤
y − x, let q < r and q < 1, we have

F (x+ d, x∗
1, q, r)− F (x, x∗

1, q, r)

≤ 1

q + ∥x+ d− x∗
1∥
×
(

q

f(x)− f(x∗
1) + r

− q

f(x+ d)− f(x∗
1) + r

)
+

∥x+ d− x∗
1∥ − ∥x− x∗

1∥
(q + ∥x+ d− x∗

1∥)(q + ∥x− x∗
1∥)

(
arctan 1− π

2

)
≤ q

q + ∥x+ d− x∗
1∥
×
(

f(x+ d)− f(x)

(f(x)− f(x∗
1) + r)(f(x+ d)− f(x∗

1) + r)

)
+

∥x+ d− x∗
1∥ − ∥x− x∗

1∥
(q + ∥x+ d− x∗

1∥)(2∥x− x∗
1∥)

(
arctan 1− π

2

)
≤ 1

(q + ∥x+ d− x∗
1∥)(2∥x− x∗

1∥)
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×
(
2qL∥d∥∥x− x∗

1∥
r2

− π

4
(∥x+ d− x∗

1∥ − ∥x− x∗
1∥)

)
.

Hence, for any given x ∈ S1 and d, when q is satisfactorily small that

q <
πr2(∥x+ d− x∗

1∥ − ∥x− x∗
1∥)

8L∥x− x∗
1∥

,

we have

F (x+ d, x∗
1, q, r) < F (x, x∗

1, q, r).

(2) f(x + d) < f(x∗
1): In this case, it is clear that f(x + d) < f(x), since

function f(t) = arctan(− q
t ) +

π
2 is increasing about t, hence, we have

F (x+ d, x∗
1, q, r) < F (x, x∗

1, q, r).

The above two cases imply that any x ∈ S1 is not the discrete local minimizer
of F (x, x∗

1, q, r) when q is satisfactorily small. □

Theorem 3.5. If x∗
1 is not a discrete global minimizer of f(x) in X, then there

exists a discrete minimizer x̄1
∗ of F (x, x∗

1, q, r) in the region S2 = {x|f(x) <
f(x∗

1), x ∈ X}.

Proof. Since x∗
1 is not a discrete global minimizer and F (x, x∗

1, q, r) ≥ 0, there
exist a point x̄1

∗ ∈ S2 and r such that f(x̄1
∗)<f(x∗

1)−r. Hence, F (x̄1
∗, x∗

1, q, r)
= 0, it implies that x̄∗

1 ∈ S2 is a discrete minimizer of F (x, x∗
1, q, r). □

Theorem 3.2, Theorem 3.4, and Theorem 3.5 show that the function F (x,
x∗
1, q, r) at point x∗

1 is a discrete filled function satisfying Definition 3.1 with
satisfactorily small q and r. The following theorems further show that the
proposed filled function has some good properties which classical functions
have.

Theorem 3.6. Suppose that Assumption 2.9 is satisfied. If x1, x2 ∈ X and
satisfy the following conditions:

(1) f(x1) ≥ f(x∗
1) and f(x2) ≥ f(x∗

1),
(2) ∥x2 − x∗

1∥ > ∥x1 − x∗
1∥.

Then, when r > 0 and q > 0 are satisfactorily small,

F (x2, x
∗
1, q, r) < F (x1, x

∗
1, q, r).

Proof. Consider the following two cases:
(1) If f(x∗

1) ≤ f(x2) ≤ f(x1), then it is obvious that the result follows.
(2) If f(x∗

1) ≤ f(x1) < f(x2), the result also holds (see the proof process in
Theorem 3.4). □

Theorem 3.7. If x1, x2 ∈ X and satisfy the following conditions:
(1) ∥x2 − x∗∥ > ∥x1 − x∗∥,
(2) f(x1) ≥ f(x∗

1) > f(x2), and f(x2)− f(x∗
1) + r > 0.

Then, we have F (x2, x
∗
1, r, q) < F (x1, x

∗
1, r, q).
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Proof. By Conditions 1 and 2, we have

1

q + ∥x2 − x∗
1∥

<
1

q + ∥x1 − x∗
1∥

and

0 < f(x2)− f(x∗
1) + r < f(x1)− f(x∗

1) + r.

Hence F (x2, x
∗
1, r, q) < F (x1, x

∗
1, r, q). □

Now we make some remarks. Firstly, in the phase of minimizing the new
discrete filled function, Theorems 3.6 and 3.7 guarantee that the current dis-
crete local minimizer x∗

1 of the objective function is escaped and the minimum
of the new discrete filled function will be always achieved at a point where the
objective function value is less than the current discrete minimum. Secondly,
the parameters q and r are easier to be appropriately chosen. In the next
section, a new discrete filled function algorithm is given.

4. Algorithm and numerical results

Based on the theoretical results in the previous section, a global optimization
algorithm over X is proposed as follows:

Algorithm

Initialization:

(1) Choose any x0 ∈ X as an initial point.
(2) Let ε = 10−5 and q0 = 0.01.
(3) Let D0 = {±ei : i = 1, 2, . . . , n}.
Main Program:

(1) Starting from initial point x0, minimize f(x) (x ∈ X) by the discrete
steepest descent method (see Algorithm 2.1), we can obtain the discrete
local minimizer x∗

1.
Let r = 1, q = q0 and D = D0.

(2) Construct the discrete filled function:

F (x, x∗
1, q, r) =

1

q + ∥x− x∗∥
ϕq(max{f(x)− f(x∗

1) + r, 0}),

where

ϕq(t) =

{
arctan(−q

t
) +

π

2
, if t ̸= 0,

0, if t = 0.

(3) If r ≤ ε, then terminate the iteration, the x∗
k is the global minimizer of

f(x), otherwise, the next step.
(4) If D ̸= ∅, then goto (6), otherwise the next step.
(5) If q < ε × 10−2, then let r = r/10, q = q0/10 and D = D0, goto (2);

otherwise let q = q/10, goto (2).
(6) Take a direction d ∈ D, and D ← D/{d}, turn to Inner Loop.
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Inner Loop:

(1) k = 0.
(2) Let yk = x∗

1 + d.
(3) Minimize F (x, x∗

1, q, r), starting from the point yk, by implementing the
modified discrete descent method (see Algorithm 2.2). yk+1 denotes the
next iterative point.

(4) If yk+1 /∈ X, then return Main Program (4), otherwise next step.
(5) If f(yk+1) ≤ f(x∗

1), then let x0 = ym+1 and return Main program (1),
otherwise let k = k + 1 and goto Inner Loop (3).

In the following part, several test problems are given and results of the
algorithm in solving these problems are reported. Through out the tests, we
use the modified discrete descent method as shown in Algorithm 2.7 to perform
local searches, in the initialization of the algorithm we let q = 0.01 and r = 1.
The algorithm in Fortran 95 is successfully used to find the global minimizers
of these test problems.

The main iterative results are summarized in tables for each function. The
symbols used are shown as follows:

k : The iteration number in finding the kth local minimizer.
x0
k or y0k : The kth initial point.

f(x0
k) or f(y

0
k) : The function value of the kth initial point.

x∗
k or y∗k : The kth local minimizer.

f(x∗
k) or f(y

∗
k) : The function value of the kth local minimizer.

Problem 4.1.

min f(x) = 100(x2 − x2
1)

2 + (1− x1)
2 + 90(x4 − x2

3)
2 + (1− x3)

2,

+10.1[(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1),

s.t. 10 ≤ xi ≤ 10, i = 1, 2, 3, 4.

This problem is a discrete counterpart of the problem 38 in [6]. It is a box
constrained nonlinear integer programming problem. It has 214 ≈ 1.94 × 105

feasible points where 41 of them are discrete local minimizers but only one
of those discrete local minimizers is the discrete global minimum solution:
x∗
global = (1, 1, 1, 1) with f(x∗

global) = 0. Let x0
1 = (9, 6, 5, 6) and x0

1 =

(9,−9,−9, 9), a summary of the computational results are displayed in Tables
1 and 2.

Problem 4.2.

min f(x) = g(x)h(x),

s.t. xi = 0.001yi, −2000 < yi < 2000, i = 1, 2,

where yi(i = 1, 2) is integer, and

g(x) = 1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2),

h(x) = 30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2).
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Table 1. Problem 4.1 initial point is (9, 6, 5, 6)

k x0
k f(x0

k) x∗
k f(x∗

k)
1 ( 9, 6, 5, 6 ) 596070.0 (3, 8, 3, 8 ) 2158.0000
2 ( 3, 10, 2, 5 ) 1887.5000 (3, 8, 2, 3) 1007.5000
3 (3, 10, 1, 1) 922.1000 (3, 8, 0,−1) 453.1000
4 (2, 5, 0,−1) 235.6000 (2, 4, 0, 0) 43.6000
5 (1, 1, 0, 0) 11.1000 (1, 1, 1, 1) 0.0000

Table 2. Problem 4.1 initial point is (9,−9,−9, 9)

k x0
k f(x0

k) x∗
k f(x∗

k)
1 (9,−9,−9, 9) 1276796.40 (3, 8,−3, 8) 2170.0000
2 (3, 10,−2, 5) 1895.5000 (3, 8,−2, 3) 1015.5000
3 (3, 10,−1, 1) 926.1000 (3, 8, 0,−1) 453.1000
4 (2, 5, 0,−1) 235.6000 (2, 4, 0, 0) 43.6000
5 (1, 1, 0, 0) 11.1000 (1, 1, 1, 1) 0.0000

Table 3. Problem 4.2

k y0k f(y0k) y∗k f(y∗k)
1 (1000, 1000) 1876.000 (1280, 890) 954.1382
2 (2000, 632) 951.2482 (1609, 71) 92.3425
3 (1379, 2000) 19.4895 (85, 2000) −210795.6253
1 (−1000,−1000) 1890.000 (0,−1000) 3.000000
2 (0, 1740) −256.5294 (85, 2000) −210795.6253
1 (2000, 2000) 35028.000 (1280, 890) 954.1382
2 (2000, 632) 951.2482 (1609, 71) 92.3426
3 (1379, 2000) 19.4895 (85, 2000) −210795.6253
1 (−2000,−2000) 20811.9999 (0,−1000) 3.000000
2 (0, 1740) −256.5294 (85, 2000) −210795.6253

This problem is a discrete counterpart of the Goldstein and Price’s function
in [5]. It is a box constrained nonlinear integer programming problem. It has
40012 ≈ 1.60×107 feasible points. More precisely, it has 207 and 2 discrete local
minimizers in the interior and the boundary of box −2.00 ≤ xi ≤ 2.00, i = 1, 2,
respectively. Nevertheless, it has only one discrete global minimum solution:
y∗global = (85, 2000) with f(y∗global) = −210795.6253. We used four initial points

in our experiment: (1000, 1000), (−1000,−1000), (2000, 2000), (−2000,−2000),
a summary of the computational results are displayed in Table 3.

Problem 4.3 (Beale’s function).

min f(x)=[1.5− x1(1− x2)]
2+ [2.25− x1(1− x2

2)]
2+ [2.625− x1(1− x3

2)]
2,
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Table 4. Problem 4.3

k y0k f(y0k) y∗k f(y∗k)
1 (3000, 5000) 146039.2031 (−3, 9735) 6.0673
2 (10000, 963) 6.0183 (3015, 504) 3.7589× 10−5

1 (−3000,−5000) 150120.7031 (11,−5964) 9.0230
2 (10000, 788) 8.9179 (3015, 504) 3.7589× 10−5

1 (8000, 8000) 16992808.2031 (−3, 9735) 6.0673
2 (10000, 963) 6.0183 (3015, 504 ) 3.7589× 10−5

1 (−8000,−8000) 17121524.2031 (5,−7842) 8.6781
2 (10000, 790) 8.6132 (3015, 504) 3.7589× 10−5

Table 5. Problem 4.4

k y0k f(y0k) y∗k f(y∗k)
1 (−5000,−5000,−5000,−5000) 3650.0000 (−116, 12, 55,−56) 3.7213× 10−4

2 (−78, 8, 38,−38) 7.9387×10−5 (−79, 8, 38,−38) 7.9045× 10−5

3 (11,−1, 11, 11) 1.2798×10−6 (10,−1, 11, 11) 2.7985× 10−7

4 (0, 0, 3, 3) 2.1060×10−9 (0, 0, 1, 1) 2.6000× 10−11

1 (5000, 5000, 5000, 5000) 3650.0000 (116,−12, 56, 57) 3.7859× 10−4

2 (78,−8, 38, 38) 7.9387×10−5 (79,−8, 38, 38) 7.9045× 10−5

3 (−11, 1,−11,−11) 1.2798×10−6 (−10, 1, 11,−11) 2.7985× 10−7

4 (0, 0, 3,−3) 2.1060×10−9 (0, 0, 1,−1) 2.6000× 10−11

Table 6

PN DN IN TI FN
1 4 5 0.2360 4953
2 2 3 0.07073 231767
3 2 2 0.05216 224364
4 4 4 278.2456 75801758
5 25 2 47.49104 9503685
5 50 2 1147.472 98451600
5 100 2 4406.341 276667658
6 25 2 42.67253 3672432
6 50 2 249.2645 35436658
6 100 2 3087.764 275437056

s.t. xi = 0.001yi, −104 ≤ yi ≤ 104, i = 1, 2,

where yi(i = 1, 2) is integer.

This problem is discrete counterpart if the problem 203 in [9]. It is a box
constrained nonlinear integer programming problem. It has 200012 ≈ 4.00×108
feasible points and many discrete local minimizers, but it has only one discrete
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Table 7. Comparison of the results

Ge’s algorithm New algorithm
PN DN IN TI FN RA IN TI FN RA

1. 4 10 73.667 70746 1.22−4 6 38.564 46653 0.47−5

32 1837.536 617564 4.73−3 11 328.102 29576 1.78−5

12 657.075 112685 2.03−3 8 375.807 52236 0.38−4

35 866.267 385507 6.12−4 18 406.542 45351 3.80−6

18 659.516 100841 0.24−4 15 315.345 50055 1.67−6

2. 2 11 57.367 2352 0.10−4 6 48.051 230 3.15−6

13 168.742 6590 0.67−5 6 123.098 567 5.03−7

13 89.527 6350 1.25−4 6 31.916 585 0.72−6

3. 2 6 3454.355 367459 8.07−4 12 982.440 13422 3.90−5

6 7098.621 653210 9.12−4 10 1752.812 17983 9.92−6

4. 4 20 12873.310 5324318 3.19−3 16 2577.120 545390 1.10−5

20 5952.546 3087641 5.00−4 16 214.342 316634 3.00−6

5. 25 32 28750.217 8342109 1.05−6 18 1524.708 345297 2.13−7

32 6532.097 2864310 2.09−6 18 352.761 96531 2.20−7

31 6098.732 3067812 4.56−6 19 213.450 88206 4.12−7

6. 25 18 1105.550 368056 0.06−5 25 428.650 30987 4.31−8

18 963.271 298767 5.01−5 25 320.710 75618 3.00−8

18 2544.326 802114 2.10−5 23 484.562 8945 7.00−7

18 3245.711 2354770 0.38−5 25 145.354 234552 8.29−8

global minimum solution y∗global = (3000, 500) with f(y∗global) = 0. We used four

initial points in our experiment: (3000, 5000), (−3000,−5000), (8000, 8000),
(−8000,−8000), a summary of the computational results are displayed in Table
4.

Problem 4.4 (Powell’s singular function).

min f(x) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4,

s.t. xi = 0.001yi, −104 ≤ yi ≤ 104, i = 1, 2, 3, 4,

where yi(i = 1, 2, 3, 4) is integer.

It is a box constrained nonlinear integer programming problem. It has
200014 ≈ 1.60 × 1017 feasible points and many local minimizers, but it has
only one global minimum solution: y∗global = (0, 0, 0, 0) with f(y∗global) = 0.

We used two initial points in our experiment: (−5000,−5000,−5000,−5000),
(5000, 5000, 5000, 5000), a summary of the computational results are displayed
in Table 5.

Problem 4.5.

min f(x) = (x1 − 1)2 + 5(xn − 1)2 +
n−1∑
i=1

(n− i)(x2
i − xi+1)

2,

s.t. −5 ≤ yi ≤ 5, i = 1, 2, . . . , n.
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This problem is a generalization of the problem 282 in [9]. It is a box con-
strained nonlinear integer programming problem. It has 11n feasible points and
many local minimizers, but it has only one global minimum solution: x∗

global =

(1, . . . , 1) with f(x∗
global) = 0. For all problem with different size, we used four

initial points in our experiment: (5, . . . , 5), (−5, . . . ,−5), (−5, . . . ,−5, 5, . . . , 5),
(5, . . . , 5,−5, . . . ,−5). For every experiment, the proposed algorithm succeeded
in identifying the discrete global minimum. Let x0

1 = (5, . . . , 5), for n =
25, 50, 100, respectively, the summary of the computational results are dis-
played in Table 6.

Problem 4.6 (Rosenbrock’s function).

min f(x) =
n−1∑
i=1

[100(xi+1 − x2
i )

2 + (1− xi)
2],

s.t. −5 ≤ yi ≤ 5, i = 1, 2, . . . , n.

It is a box constrained/unconstrained nonlinear integer programming prob-
lem. It has 11n feasible points and many local minimizers, but it has only
one global minimum solution: x∗

global = (1, 1, . . . , 1) with f(x∗
global) = 0. For

all problems with different sizes, we used four initial points in our experiment:
(5, . . . , 5), (−5, . . . ,−5), (−5, . . . ,−5, 5, . . . , 5), (5, . . . , 5,−5, . . . ,−5). For ev-
ery experiment, the proposed algorithm succeeded in identifying the discrete
global minimum. Let x0

1 = (5, . . . , 5), for n = 25, 50, 100, respectively, the
summary of the computational results are displayed in Table 6.

In Table 6, we give the experiment results for Problems 4.1-4.6. In Table 7,
Problems 4.1-4.6. with 2 to 25 variables are tested and the table shows that
in most cases the new filled function algorithm works better than Ge’s filled
function algorithm. The symbols used in Tables 6-7 are shown as follows:

PN : The Nth problem.

DN : The dimension of objective function of a problem.

IN : The number of iteration cycles.

TI : The CPU time in seconds for the algorithm to stop.

FN : The number of objective function evaluations for algorithm to stop.

RA : The ratio of the number of function evaluations to the number of

feasible points.

5. Conclusions

This paper gives a definition of the filled function for the nonlinear integer
programming problem, and presents a new filled function. A filled function
algorithm based on this given filled function is designed. The implementation
of the algorithm on several test problems is reported with satisfactory numerical
results.
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