• Title/Summary/Keyword: Global Ischemia

Search Result 123, Processing Time 0.023 seconds

The Effect of Therapeutic Exercise on Brain-Derived Neurotrophic Factor After Global Brain Ischemia in Rats (흰쥐의 전뇌허혈 후 재관류 시 운동치료에 의한 신경영양성인자 발현)

  • Gu, Sang-Hun;Song, Ju-Young;Kown, Young-Shil;Nam, Ki-Won;Song, Ju-Min;Lee, Yun-Seob;Choi, Jin-Ho;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.2
    • /
    • pp.281-292
    • /
    • 2001
  • This study was performed to investigate the effect of therapeutic exercise on brain-derived neurotrophic factor manifestation after global brain ischemia in rats. Nine rats with global ischemia were divided at random into two group. In the control group, three rats remained in cage. But, in the end, two rats were alive. In the therapeutic exercise group, six rats remained. The five rats of this group was swam for 30 minutes everyday for a week. The brain-derived neurotrophic factor expression was identified from immunohistochemistry. The results of this study were as follows : 1. In the control group, a little expression of brain-derived neurotrophic factor was observed at cortex and hippocampus layer, but cell body and axon was observed obscurely. 2. In the experimental group, a much expression of brain-derived neurotrophic factor was observed at cortex and hippocampus layer, and cell body and axon was observed clearly. In the neurological examination(beam-walking test). experimental group was obtained higher 1.4 points than control group. BDNF expression was increased by swimming for 30 minutes everyday for a week. Therefore, therapeutic exercise contribute to brain plasticity after brain ischemia.

  • PDF

Induction of Neuron-derived Orphan Receptor-1 in the Dentate Gyrus of the Hippocampal Formation Following Transient Global Ischemia in the Rat

  • Kim, Younghwa;Hong, Soontaek;Noh, Mi Ra;Kim, Soo Young;Huh, Pil Woo;Park, Sun-Hwa;Sun, Woong;Kim, Hyun
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.8-12
    • /
    • 2006
  • Neuron-derived orphan receptor (NOR-1) is a member of the thyroid/steroid receptor superfamily that was originally identified in forebrain neuronal cells undergoing apoptosis. In addition to apoptotic stimuli, activation of several signal transduction pathways including direct neuronal depolarization regulates the expression of NOR-1. In this study we tested whether the expression of NOR-1 is changed following transient ischemic injury in the adult rat brain. NOR-1 mRNA increased rapidly in the dentate gyrus of the hippocampal formation and piriform cortex 3 h after transient global ischemia and returned to basal level at 6 h. On the other hand, oxygen-glucose deprivation of cultured cerebral cortical neurons did not alter the expression of NOR-1. These results suggest that expression of NOR-1 is differentially regulated in different brain regions in response to globally applied brain ischemia, but that hypoxia is not sufficient to induce its expression.

Role of Nitric Oxide in Leukocyte-Endothelial Interaction in Cerebral Venules during Reperfusion after Global Ischemia

  • Kim, Sae-Han;Lee, Young-Bae;Jung, Ju-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.3
    • /
    • pp.221-226
    • /
    • 2005
  • Objective : Reactive oxygen metabolites and polymorphonuclear leukocytes have been implicated in the pathophysiology of reperfusion injury. The mechanisms involved in superoxide-mediated leukocyte adherence remain unclear, however, nitric oxide[NO] may contribute to this response. The present study is undertaken to elucidate mechamisms controlling NO based mechanisms that regulated leukocyte-endothelial interactions in the cerebral vasculature after global cerebral ischemia and reperfusion. Methods : Pial venular leukocyte adherence of anesthetized newborn piglets was quantified by in situ fluorescence videomicroscopy through closed cranial windows during basal conditions and during 2hours of reperfusion after global ischemia induced by 9minutes of asphyxia. Nitric oxide synthase[NOS] was inhibited by local window superfusion of L-nitroarginine[NA]; superfusion of sodium nitroprusside[SNP] was used to donate NO. Results : The mean number of adherent leukocytes to cerebral venules in the 9minutes asphyxia and 2hours reperfusion group were $161{\pm}19$ compared with $13{\pm}4$ in the nonasphyxial group. Superfusion of L-NA through the cranial window for 2hours resulted in leukocyte adherence similar to that observed during the initial 2hours of reperfusion after asphyxia. Leukocyte adherence was not additionally increased in asphyxic animal treated with L-NA. SNP inhibited asphyxia induced leukocyte adherence back to control levels. Conclusions : Nitric oxide inhibits leukocyte adherence to cerebral venules during the initial hours of reperfusion after asphyxia, and that NO supplementation inhibit asphyxia induced leukocyte adherence back to control levels. These results indicate that NO is an important factor in ischemia-reperfusion induced leukocyte adherence.

The Effect of Scutellariae Radix on Ischemia Induced Brain Injury in Rats

  • Park, Ji-Eun;Kim, Young-Kyun
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.10 no.1
    • /
    • pp.8-19
    • /
    • 2009
  • Scutellaria Radix, originated from Scutellaria baicalensis Georgi, is one of the most important medicine in traditional Oriental medicine, and possesses anti-bacterial activity and sedative effects, can be applied in the treatment of a range of conditions including diarrhea and hepatitis. It is reported that chronic global ischemia induces neuronal damage in selective, vulnerable regions of the brain, especially the hippocampus and cerebral cortex. In the present study, to investigate the effect of Scutellaria Radix extract on cerebral disease, the changes of regional cerebral blood flow and pial arterial diameter on ischemia/reperfusion state was determinated by Laser-Doppler Flowmetry and some parameters concerned with oxidative stress also measured. When SRe were administered for five days with the concentration of 100 mg/kg, GSH activity significantly increased. But SRe administeration showed no significant change in lipid peroxidation. When the activities of CAT, Cu, Zn-SOD and GSH were measured, CAT and GSH were activated by SRe administration. When 1 and 3 ㎍/㎖ SRe was applied to the neuronal cell cultures, the quantities of LDH was significantly reduced when compared with cultures treated only with NMDA. Through this study, it can be concluded that the ischemia/reperfusion induced brain stress may have contributed to cerebral damage in rats, and the present study provides clear evidence for the beneficial effect of SRe on ischemia induced brain injury.

  • PDF

Neuroprotective Effects of Hyulbuchookau-tang(血府逐瘀湯) on Global Cerebral Ischemia of the Rats (혈부축어탕(血府逐瘀湯)이 흰쥐의 전뇌허혈에 미치는 영향)

  • Cho, Eun-Hee;Kim, Young-Gyun;Kwon, Jung-Nam
    • The Journal of Korean Medicine
    • /
    • v.28 no.2 s.70
    • /
    • pp.44-53
    • /
    • 2007
  • Objectives : This study examined the neuroprotective effect of Hyulbuchookau-tang (血府逐瘀湯, HBCAT) against neural damage following global cerebral infarction. Methods : Sprague-Dawley rats were induced with global cerebral infarction by occlusion of the bilateral common carotid artery with hypotension (CCAO). The rats were divided into 3 groups. We treated extract of HBCAT to one group after operation (sample group), one group wasn't induced with ischemic damage after operation (sham group), and one group was induced with ischemic damage after operation (control group) but not treated. We observed neurological scores and cresyl violet-stained hippocampus CAl area, TUNEL-positive neurons, and Bax-positive neurons in brain regions. Results : HBCAT treatment after CCAO increased pyramidal neurons in CAl hippocampus induced by CCAO. HBCAT treatment after CCAO reduced Bax-positive neurons in CAl hippocampus of brain regions induced by CCAO. HBCAT treatment after CCAO wasn't effective for HSP70-positive neurons in CAl hippocampus induced by CCAO. Conclusions : These results suggest that HBCAT has a neuroprotective effect against global cerebral ischemia.

  • PDF

Neuroprotecticve Effect of Sophora Subprostrata on Transient Global Ischemia in Gerbil (광두근(廣豆根)의 Gerbil 전뇌(全腦)허혈에 대한 신경손상방어효능 연구)

  • Min, Hong-Kyu;Kang, Ho-Chang;Lee, Hyun-Sam;Kim, Sun-Yeou;Sohn, Young-Joo;Jung, Hyuk-Sang;Sohn, Nak-Won;Kim, Yoon-Bum
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.1-9
    • /
    • 2008
  • Objectives : This research was performed to investigate protective effect of Sophora Subprostrata against transient global ischemic damage after 5-min two vessel occlusion. Methods : Gerbils were divided into three groups: Normal group, 5-min two vessel occlusion (2VO) group, Sophora Subprostrata administrated group after 2VO. The CCAs were occluded by microclip for 5min. Sophora Subprostrata was administrated orally(12mg/ml) for 7 days after 2VO. The histological and immunohistochemistrical analysis was performed at 72 hours and 7 days after the surgery each. For histological analysis, the brain tissue was stained with 1% cresyl violet solution and Immunohistochemistry for BAX and Bcl-2 was carried out to examine effect of Sophora Subprostrata on ischemic brain tissue. Results : The results showed that (1) Sophora Subprostrata has the protective effect against ischemia in CA1 area of the gerbil hippocampus 7 days after 5-minute occlusion, (2) the treatment of Sophora Subprostrata inhibits the expression of Bax relatively after 2VO-induced ischemia. That protective effect of the Sophora Subprostrata seems to be performed by regulating the proportion of Bax and Bcl-2 protein, (3) in hypoxia/reperfusion model using PC12 cell, the Sophora Subprostrata extract has the protective effect against ischemia in the dose of $2{\mu}/m{\ell}$ and $20{\mu}/m{\ell}$.This study suggests that Sophora Subprostrata has neuroprotective effect against neuronal damage following cerebral ischemia in vivo with a widely used experimental model of cerebral ischemia in Mongolian gerbils and that Sophora Subprostrata regulates the proportion of Bax and Bcl-2 protein following ischemia. And, Sophora Subprostrata extract has protective effects also on a hypoxia/reperfusion cell culture model using PC12 cell. Conclusions : Sophora Subprostrata has protective effects against ischemic brain damage at the early stage of ischemia.

  • PDF

The Effects of SWS(Sahyang·Woohwang·Samchilkeun) on Hyperlipidemia and Brain Damage (사향(麝香)·우황(牛黃)·삼칠근(三七根) 복합방(複合方)이 고지혈증(高脂血症) 및 뇌손상(腦損傷)에 미치는 영향(影響))

  • Park, Jung-yang;Kim, Byeong-tak
    • Journal of Haehwa Medicine
    • /
    • v.8 no.1
    • /
    • pp.425-449
    • /
    • 1999
  • For the evaluation of the effect on SWS, experiments were made on hyperlipidemia induced by hypercholesterol diet, inhibitory reaction to human platelet aggregation, Pulmonary thrombosis induced by collagen and epinephrine, global cerebral ischemia induced by KCN, brain ischemia induced by MCA occlusion, cytotoxicity of PC12 cells induced by amyloid ${\beta}$ protein(25-35), and NO production in RAW cells stimulated by lipopolysaccharide. The results were obtained as follows : 1. In the experiment on hyperlipidemia, the level of serum total cholesterol, phospholipid, and LDL-cholesterol were significantly decreased while the level of triglyceride, VLDL-cholesterol, and HDL-cholesterol had no significant change. 2. In the experiment on inhibitory reaction to platelet aggregation, SWS inhibited platelet aggregation induced by ADP(36.05%), by collagen(20.4%), and by thrombin(0.6%). 3. In the experiment on pulmonary thrombosis induced by collagen and epinephrine, the protective effect was found(37%). 4. In the experiment on global cerebral ischemia, coma duration induced by KCN changed insignificantly. 5. In the experiment on MCA occlusion, the change of neurologic grades on hind limb was significant only after the operation. Besides brain ischemic area and edema ratio were significantly decreased. 6. In the experiment on cytotoxicity of PC 12 cells induced by amyloid ${\beta}$ protein, the significant protective effect was found as concentration increases. 7. In the experiment on NO production in RAW cells stimulated by lipopolysaccharide, NO was significantly decreased. According to the results, it is expected that SWS might be effective on hyperlipidemia and brain damage.

  • PDF

Effects of in vivo-stresses on the Activities of the Myocardial Antioxidant Enzymes and the Ischemia-Reperfusion Injury in Rat Hearts (스트레스성 자극에 의한 항산화효소 유도와 허혈/재관류 심장 보호효과)

  • 박종완;김영훈;김명석
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.161-168
    • /
    • 1995
  • It has been found that various stress challenges induce the myocardial antioxidant enzymes and produce an acquisition of the cellular resistance to the ischemic injury in animal hearts. Most of the stresses, however, seem to be guite dangerous to an animal's life. In the present study, therefore, we tried to search for safely applicable stress modalities which could lead to the induction of antioxidant enzymes and the production of myocardial tolerance to the ischemia-reperfusion injury. Male Sprague-Dawley rats (200-250 g) were exposed to various non-fatal stress conditions, i.e., hyperthermia (environmental temperature of $42^{\circ}C$ for 30 min, non-anesthetized animal), iramobilization (60 min), treadmill exercise (20 m/min, 30min), swimming (30 min), and hyperbaric oxyflenation (3 atm, 60 min), once a day for 5 days. The activities of myocardial antioxidant enzymes and the ischemia-reperfusion injury of isolated hearts were evaluated at 24 hr after the last application of the stresses. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase (G6PD), were assayed in the freshly excised ventricular tissues. The ischemia-reperfusion injury was produced by 20 min-global ischemia followed by 30 min-reperfusion using a Langendorff perfusion system. In swimming and hyperbaric oxygenation groups, the activities of SOD and G6PD increased significantly and in the hyperthermia group, the catalase activity was elevated by 63% compared to the control. The percentile recoveries of cardiac function at 30 min of the post-ischemic reperfusion were 55.4%, 73.4%, and 74.2% in swimming, the hyperbaric oxygenation and the hyperthermia groups, respectively. The values were significantly higher than that of the control (38.6%). In additions, left ventricular end-diastolic pressure and lactate dehydrogenase release were significantly reduced in the stress groups. The results suggest that the antioxidant enzymes in the heart could be induced by the apparently safe in vivo-stresses and this may be involved in the myocardial protection from the ischemia-reperfusion injury.

  • PDF

Effect of Puerariae Radix on c-Fos and c-Jun Expressions in Ischemic Damaged Hippocampus of Rats (갈근이 뇌허혈 손상 흰쥐의 뇌해마 c-Fos와 c-Jun 발현에 미치는 영향)

  • Jo Gyu-Chil;Kim Youn Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.538-543
    • /
    • 2004
  • Objective : This study investigated a neuroprotective effect of Puerariae Radix on cerebral ischemia. Method : The global cerebral ischemia was induced by bilateral common carotid arteries occlusion under hypotension (40mmHg) in Sprague-Dawley rats. After the treatment of Puerariae Radix extract, changes of c-Fos and c-Jun expressions, immediate early genes expressed by cerebral ischemia, in the hippocampus were observed immunohistochemically. Result: The results obtained are as follows; The significant increases of c-Fos and c-Jun expressions were observed in the hippocampus of the ischemic damaged rat brains. Then Puerariae Radix treatment demonstrated significant decreases of c-Fos and c-Jun expressions in CA1 region and dentate gyrus as compared with control group. On the upregulated c-Fos expression induced by cerebral ischemia, Puerariae Radix treatment demonstrated significant decreases of c-Fos expressions in CA1 region (P<0.01) and dentate gyrus (P<0.05) as compared to the control group, but there were not a significant changes in CA2 and CA3 regions of the hippocampus. On the upregulated c-Jun expression induced by cerebral ischemia, Puerariae Radix treatment demonstrated significant decrease of c-Jun expression in CA1 region (P<0.05) as compared to the control group, but there were not a significant changes in CA2, CA3, and dentate gyrus of the hippocampus. Conclusion : These results suggested that Puerariae Radix reveals the neuroprotective effect through the reduction of immediate early genes, c-Fos and c-Jun, induced by cerebral ischemia.

Large Scale Gene Expression Analysis in Rat Models of 4-Vessel Occlusion Ischemia (4-Vessel Occlusion 허혈동물모델에서의 대규모 유전자 발현 연구)

  • Kang, Bong-Joo;Hong, Seong-Gil;Kim, Yun-Taik;Kim, Young-Ok;Cho, Dong-Wuk
    • Korean Journal of Oriental Medicine
    • /
    • v.6 no.1
    • /
    • pp.89-98
    • /
    • 2000
  • Cerebral ischemia, the most prevalent form of clinical stroke, is a medical problem of the first magnitude. Substantial efforts are being made to develop drugs which will protect the brain from the neurodegeneration followed by an ischemic stroke. A key factor in this process is the development of animal models that mimic the neuropathological consequences of stroke. Recently, there is increasing an evidence that free radical is involved in the mechanisms of ischemic brain damage. We investigated the macro scale gene expression analysis on the global ischemia induced by 4-vessel occlusion in Wister rats. The recent availability of microarrays provides an attractive strategy for elaborating an unbiased molecular profile of large number of genes during ischemic injury. This experimental approach offers the potential to identify molecules or cellular pathways not previously associated with ischemia. Ischemia was induced by 4-vessel occlusion for 10 minutes and reperfused again. RNA from sham control brain and time-dependent ischemed brain were hybridized to microarrays containing 4,000 rat genes. 589 genes were found to be at least 2 fold regulated at one or more time points. These survey data provide the foundation studies that should provide convincing proof for ischemia and oxidative stress on gene expression.

  • PDF