• Title/Summary/Keyword: Global Approximate Optimization

Search Result 37, Processing Time 0.022 seconds

Control of pH Neutralization Process using Simulation Based Dynamic Programming in Simulation and Experiment (ICCAS 2004)

  • Kim, Dong-Kyu;Lee, Kwang-Soon;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.620-626
    • /
    • 2004
  • For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.

  • PDF

An Efficient Traning of Multilayer Neural Newtorks Using Stochastic Approximation and Conjugate Gradient Method (확률적 근사법과 공액기울기법을 이용한 다층신경망의 효율적인 학습)

  • 조용현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.98-106
    • /
    • 1998
  • This paper proposes an efficient learning algorithm for improving the training performance of the neural network. The proposed method improves the training performance by applying the backpropagation algorithm of a global optimization method which is a hybrid of a stochastic approximation and a conjugate gradient method. The approximate initial point for f a ~gtl obal optimization is estimated first by applying the stochastic approximation, and then the conjugate gradient method, which is the fast gradient descent method, is applied for a high speed optimization. The proposed method has been applied to the parity checking and the pattern classification, and the simulation results show that the performance of the proposed method is superior to those of the conventional backpropagation and the backpropagation algorithm which is a hyhrid of the stochastic approximation and steepest descent method.

  • PDF

Repetitive Response Surface Enhancement Technique Using ResponseSurface Sub-Optimization and Design Space Transformation (반응모델 최적화와 설계공간 변환을 이용한 반복적 반응면 개선 기법 연구)

  • Jeon, Gwon-Su;Lee, Jae-U;Byeon, Yeong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.42-48
    • /
    • 2006
  • In this study, a repetitive response surface enhancement technique (RRSET) is proposed as a new system approximation method for the efficient multidisciplinary design and optimization (MDO). In order to represent the highly nonlinear behavior of the response with second order polynomials, RRSET introduces a design space transformation using stretching functions and repetitive response surface improvement. The tentative optimal point is repetitively included to the set of experimental points to better approximate the response surface of the system especially near the optimal point, hence a response surface with significantly improved accuracy can be generated with very small experimental points and system iterations. As a system optimizer, the simulated annealing, which generates a global design solution is utilized. The proposed technique is applied to several numerical examples, and demonstrates the validity and efficiency of the method. With its improved approximation accuracy, the RRSET can contribute to resolve large and complex system design problems under MDO environment.

Substructuring-Based Structural Reanalysis by Global-Local Approximations (전역-부분 근사화에 의한 부구조화 기반 구조재해석)

  • 서상구;김경일;황충열;황진하
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.141-149
    • /
    • 1996
  • Efficient approximate reanalysis techniques based on substructuring are presented. In most optimal design problems, the analysis precedure must be repeated many times. In particular, one of the main obstacles in the structural optimization systems is high computational cost and time required for the repeated analysis of large-scale structural systems. The purpose of this paper is to show how to evaluate efficiently the sturctural behavior of new designs using information from the previous ones, instead of the multiple repeated analysis of basic equations for successive modification in the optimal design. The proposed reanalysis method is a combined Taylor series expansion and reduced basis method based on substructuring. Several numerical examples illustrate the effectiveness of the method.

  • PDF

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

Optimum Design based on Sequential Design of Experiments and Artificial Neural Network for Heat Resistant Characteristics Enhancement in Front Pillar Trim (프런트 필라 트림의 내열특성 향상을 위한 순차적 실험계획법과 인공신경망 기반의 최적설계)

  • Lee, Jung Hwan;Suh, Myung Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1079-1086
    • /
    • 2013
  • Optimal mount position of a front pillar trim considering heat resistant characteristics can be determined by two methods. One is conventional approximate optimization method which uses the statistical design of experiments (DOE) and response surface method (RSM). Generally, approximated optimum results are obtained through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The other is a methodology derived from previous work by the authors, which is called sequential design of experiments (SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network (ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently.

Optimum Design Based on Sequential Design of Experiments and Artificial Neural Network for Enhancing Occupant Head Protection in B-Pillar Trim (센터 필라트림의 FMH 충격성능 향상을 위한 순차적 실험계획법과 인공신경망 기반의 최적설계)

  • Lee, Jung Hwan;Suh, Myung Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1397-1405
    • /
    • 2013
  • The optimal rib pattern design of B-pillar trim considering occupant head protection can be determined by two methods. One is the conventional approximate optimization method that uses the statistical design of experiments (DOE) and response surface method (RSM). Generally, approximated optimum results are obtained through the iterative process by trial-and-error. The quality of results strongly depends on the factors and levels assigned by a designer. The other is a methodology derived from previous work by the authors, called the sequential design of experiments (SDOE), to reduce the trial-and-error procedure and to find an appropriate condition for using artificial neural network (ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently.