• Title/Summary/Keyword: Glioblastoma multiforme

Search Result 66, Processing Time 0.029 seconds

Autophagy Inhibition Promotes Gambogic Acid-induced Suppression of Growth and Apoptosis in Glioblastoma Cells

  • Luo, Guo-Xuan;Cai, Jun;Lin, Jing-Zhi;Luo, Wei-Shi;Luo, Heng-Shan;Jiang, Yu-Yang;Zhang, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6211-6216
    • /
    • 2012
  • Objective: To investigate the effects of gambogic acid (GA) on the growth of human malignant glioma cells. Methods: U251MG and U87MG human glioma cell lines were treated with GA and growth and proliferation were investigated by MTT and colony formation assays. Cell apoptosis was analyzed by annexin V FITC/PI flow cytometry, mitochondrial membrane potential assays and DAPI nuclear staining. Monodansylcadaverine (MDC) staining and GFP-LC3 localisation were used to detect autophagy. Western blotting was used to investigate the molecular changes that occurred in the course of GA treatment. Results: GA treatment significantly suppressed cell proliferation and colony formation, induced apoptosis in U251 and U87MG glioblastoma cells in a time- and dose-dependent manner. GA treatment also lead to the accumulation of monodansylcadaverine (MDC) in autophagic vacuoles, upregulated expressions of Atg5, Beclin 1 and LC3-II, and the increase of punctate fluorescent signals in glioblastoma cells pre-transfected with GFP-tagged LC3 plasmid. After the combination treatment of autophagy inhitors and GA, GA mediated growth inhibition and apoptotic cell death was further potentiated. Conclusion: Our results suggested that autophagic responses play roles as a self-protective mechanism in GA-treated glioblastoma cells, and autophagy inhibition could be a novel adjunctive strategy for enhancing chemotherapeutic effect of GA as an anti-malignant glioma agent.

The Dose Dependent Effects of Ruxolitinib on the Invasion and Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT Signaling Pathway

  • Delen, Emre;Doganlar, Oguzhan
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.4
    • /
    • pp.444-454
    • /
    • 2020
  • Objective : Glioblastoma multiforme (GBM) is the most aggressive for of brain tumor and treatment often fails due to the invasion of tumor cells into neighboring healthy brain tissues. Activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is essential for normal cellular function including angiogenesis, and has been proposed to have a pivotal role in glioma invasion. This study aimed to determine the dose-dependent effects of ruxolitinib, an inhibitor of JAK, on the interferon (IFN)-I/IFN-α/IFN-β receptor/STAT and IFN-γ/IFN-γ receptor/STAT1 axes of the IFN-receptor-dependent JAK/STAT signaling pathway in glioblastoma invasion and tumorigenesis in U87 glioblastoma tumor spheroids. Methods : We administered three different doses of ruxolitinib (50, 100, and 200 nM) to human U87 glioblastoma spheroids and analyzed the gene expression profiles of IFNs receptors from the JAK/STAT pathway. To evaluate activation of this pathway, we quantified the phosphorylation of JAK and STAT proteins using Western blotting. Results : Quantitative real-time polymerase chain reaction analysis demonstrated that ruxolitinib led to upregulated of the IFN-α and IFN-γ while no change on the hypoxia-inducible factor-1α and vascular endothelial growth factor expression levels. Additionally, we showed that ruxolitinib inhibited phosphorylation of JAK/STAT proteins. The inhibition of IFNs dependent JAK/STAT signaling by ruxolitinib leads to decreases of the U87 cells invasiveness and tumorigenesis. We demonstrate that ruxolitinib may inhibit glioma invasion and tumorigenesis through inhibition of the IFN-induced JAK/STAT signaling pathway. Conclusion : Collectively, our results revealed that ruxolitinib may have therapeutic potential in glioblastomas, possibly by JAK/STAT signaling triggered by IFN-α and IFN-γ.

Caring for Dying Patient with Glioblastoma Multiforme: A Narrative Analysis of the Caring Experience of Family Caregiver (가족 돌봄제공자의 말기 교모세포종 환자 돌봄경험-갈등과정에 대한 내러티브 분석)

  • Kim, Myung-Ah;Ryu, Eun-Jung;Hong, Yeon-Pyo
    • Asian Oncology Nursing
    • /
    • v.12 no.2
    • /
    • pp.186-193
    • /
    • 2012
  • Purpose: The purpose of this narrative study was to understand how family caregivers interpreted themselves life during caring for dying patients with gliobalstoma, and how they integrated these experiences into their personal biographies. Methods: Three family caregivers were recruited for the study. Data were collected through a series of audio-taped unstructured interviews and conversations with participants. The interviews and observation were conducted between October and November, 2011. Data were analyzed using psychosocial analytical methods that combined case based, in-depth staged analysis of narratives. Results: The life experiences of the family caregivers with a dying family member were summarized as, in their own voices, 'the repetition of gliobalstoma,' 'a smart patient,' 'being obsessed with rehabilitation treatment,' 'the frustration from nothing but just looking at the suffering of the patient,' and 'a stubborn son'. Conclusion: Caregiving was characterised by various roles and life changes from the moment of diagnosis. Family caregivers of brain tumor reported experiences similar to those described by caregivers of people with other cancers. What differed for this group was the rapidity of change and the need for immediate information and support to assist with caring for a person with high-grade glioma.

Thrombin-induced Migration and Matrix Metalloproteinase-9 Expression Are Regulated by MAPK and PI3K Pathways in C6 Glioma Cells

  • Kim, Ji-Young;Lee, Jae-Won;Kim, Song-In;Choi, Yong-Joon;Lee, Won-Ki;Jeong, Myung-Ja;Cha, Sang-Hoon;Lee, Hee-Jae;Chun, Wan-Joo;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.211-216
    • /
    • 2011
  • Glioblastoma multiforme is one of the most common and aggressive tumors in central nervous system. It often possesses characteristic necrotic lesions with hemorrhages, which increase the chances of exposure to thrombin. Thrombin has been known as a regulator of MMP-9 expression and cancer cell migration. However, the effects of thrombin on glioma cells have not been clearly understood. In the present study, influences of thrombin on glioma cell migration were examined using Boyden chamber migration assay and thrombin-induced changes in MMP-9 expression were measured using zymography, semi-quantitative RT-PCR, and Western blotting. Furthermore, underlying signaling pathways by which thrombin induces MMP-9 expression were examined. Thrombin-induced migration and MMP-9 expression were significantly potentiated in the presence of wortmannin, a PI3K inhibitor, whereas MAPK inhibitors suppressed thrombin-induced migration and MMP-9 expression in C6 glioma cells. The present data strongly demonstrate that MAPK and PI3K pathways evidently regulate thrombin-induced migration and MMP-9 expression of C6 glioma cells. Therefore, the control of these pathways might be a beneficial therapeutic strategy for treatment of invasive glioblastoma multiforme.

Chemotherapeutic Drug Resistant Cancer Stem-like Cells of Glioma (다형성 교모세포종의 항생제 내성 종양 줄기세포)

  • Kang, Mi-Kyung;Kang, Soo-Kyung
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1039-1045
    • /
    • 2007
  • Glioblastoma multiforme (GBM) is the most frequently occurring brain cancer. Although the existence of cancer stem cells (CSCs) in GBM has been established, there is little evidence to explain the link between CSCs and chemoresistance. In this study, we investigated that only a few cells of A172 and established GBM2 survived after 1,3-bis(2chloroethyl)-1-nitrosourea (BiCNU) exposures and these sur-vived cells resist the subsequent BiCNU treatment. In addition, these BiCNU-resistant small pop-ulations derived from GBM cells increased the phosphorylations of Erk and Akt and highly expressed CD133 stem cell surface marker. Furthermore, we observed that the BiCNU-resistant cancer cells de-rived from GBM have grown tumors when transplanted into severe combined immuno-deficient (SCID) mouse brain. These results demonstrate that BiCNU-resistant subpopulation cells derived from GBM have cancer stem-like cell properties. Therefore, it may provide provide further evidence that CSCs in GBM have chemotherapeutic drug resistance.

Prognostic Factors Influencing Clinical Outcomes of Malignant Glioblastoma Multiforme: Clinical, Immunophenotypic, and Fluorescence in Situ Hybridization Findings for 1p19q in 816 Chinese Cases

  • Qin, Jun-Jie;Liu, Zhao-Xia;Wang, Jun-Mei;Du, Jiang;Xu, Li;Zeng, Chun;Han, Wu;Li, Zhi-Dong;Xie, Jian;Li, Gui-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.971-977
    • /
    • 2015
  • Malignant glioblastoma multiforme (GBM) is the most malignant brain tumor and despite recent advances in diagnostics and treatment prognosis remains poor. In this retrospective study, we assessed the clinical and radiological parameters, as well as fluorescence in situ hybridization (FISH) of 1p19q deletion, in a series of cases. A total of 816 patients with GBM who received surgery and radiation between January 2010 and May 2014 were included in this study. Kaplan-Meier survival analysis and Cox regression analysis were used to find the factors independently influencing patient progression free survival (PFS) and overall survival (OS). Age at diagnosis, preoperative Karnofsky Performance Scale (KPS) score, KPS score change at 2 weeks after operation, neurological deficit symptoms, tumor resection extent, maximal tumor diameter, involvement of eloquent cortex or deep structure, involvement of brain lobe, Ki-67 and MMP9 expression level and adjuvant chemotherapy were statistically significant factors (p<0.05) for both PFS and OS in the univariate analysis. Cox proportional hazards modeling revealed that age ${\leq}50$ years, preoperative KPS score ${\geq}80$, KPS score change after operation ${\geq}0$, involvement of single frontal lobe, deep structure involvement, low Ki-67 and MMP9 expression and adjuvant chemotherapy were independent favorable factors (p<0.05) for patient clinical outcomes.

Prognostic Prediction Based on Dynamic Contrast-Enhanced MRI and Dynamic Susceptibility Contrast-Enhanced MRI Parameters from Non-Enhancing, T2-High-Signal-Intensity Lesions in Patients with Glioblastoma

  • Sang Won Jo;Seung Hong Choi;Eun Jung Lee;Roh-Eul Yoo;Koung Mi Kang;Tae Jin Yun;Ji-Hoon Kim;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1369-1378
    • /
    • 2021
  • Objective: Few attempts have been made to investigate the prognostic value of dynamic contrast-enhanced (DCE) MRI or dynamic susceptibility contrast (DSC) MRI of non-enhancing, T2-high-signal-intensity (T2-HSI) lesions of glioblastoma multiforme (GBM) in newly diagnosed patients. This study aimed to investigate the prognostic values of DCE MRI and DSC MRI parameters from non-enhancing, T2-HSI lesions of GBM. Materials and Methods: A total of 76 patients with GBM who underwent preoperative DCE MRI and DSC MRI and standard treatment were retrospectively included. Six months after surgery, the patients were categorized into early progression (n = 15) and non-early progression (n = 61) groups. We extracted and analyzed the permeability and perfusion parameters of both modalities for the non-enhancing, T2-HSI lesions of the tumors. The optimal percentiles of the respective parameters obtained from cumulative histograms were determined using receiver operating characteristic (ROC) curve and univariable Cox regression analyses. The results were compared using multivariable Cox proportional hazards regression analysis of progression-free survival. Results: The 95th percentile value (PV) of Ktrans, mean Ktrans, and median Ve were significant predictors of early progression as identified by the ROC curve analysis (area under the ROC curve [AUC] = 0.704, p = 0.005; AUC = 0.684, p = 0.021; and AUC = 0.670, p = 0.0325, respectively). Univariable Cox regression analysis of the above three parametric values showed that the 95th PV of Ktrans and the mean Ktrans were significant predictors of early progression (hazard ratio [HR] = 1.06, p = 0.009; HR = 1.25, p = 0.017, respectively). Multivariable Cox regression analysis, which also incorporated clinical parameters, revealed that the 95th PV of Ktrans was the sole significant independent predictor of early progression (HR = 1.062, p < 0.009). Conclusion: The 95th PV of Ktrans from the non-enhancing, T2-HSI lesions of GBM is a potential prognostic marker for disease progression.

Continuous Low-Dose Temozolomide Chemotherapy and Microvessel Density in Recurrent Glioblastoma

  • Woo, Jong-Yun;Yang, Seung Ho;Lee, Youn Soo;Lee, Su Youn;Kim, Jeana;Hong, Yong Kil
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.5
    • /
    • pp.426-431
    • /
    • 2015
  • Objective : The purpose of this study was to evaluate the clinical efficacy of continuous low-dose temozolomide (TMZ) chemotherapy for recurrent and TMZ-refractory glioblastoma multiforme (GBM) and to study the relationship between its efficacy and microvessel density within the tumor. Methods : Thirty patients who had recurrent GBM following Stupp's regimen received TMZ daily at $50mg/m^2/day$ until tumor progression between 2007 and 2013. The median duration of continuous low-dose TMZ administration was 8 weeks (range, 2-64). Results : The median progression-free survival (PFS) of continuous low-dose TMZ therapy was 2 months (range, 0.5-16). At 6 months, PFS was 20%. The median overall survival (OS) from the start of this therapy to death was 6 months (95% CI : 5.1-6.9). Microvessel density of recurrent tumor tissues obtained by reoperation of 17 patients was $22.7{\pm}24.1/mm^2$ (mean${\pm}$standard deviation), and this was lower than that of the initial tumor ($61.4{\pm}32.7/mm^2$) (p-value=0.001). It suggests that standard TMZ-chemoradiotherapy reduces the microvessel density within GBM and that recurrences develop in tumor cells with low metabolic burden. The efficacy of continuous low-dose TMZ could not be expected in recurrent GBM cells in poor angiogenic environments. Conclusion : The efficacy of continuous low-dose TMZ chemotherapy is marginal. This study suggests the need to develop further treatment strategies for recurrent and TMZ-refractory GBM.

Thallium-201 Uptake and Washout in T1-201 Brain SPECT of Various Brain Tumors (각종 뇌 종양의 Thallium-201 뇌 SPECT에서 Thallium-201의 동태)

  • Lim, Sang-Moo;Hong, Sung-Woon;Rhee, Chang-Hun;Lee, Seung-Hoon;Kim, Jong-Hyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.2
    • /
    • pp.360-364
    • /
    • 1992
  • Treatment for the brain tumors consist of surgery, chemotherapy, and a variety of methods of irradiation. Therapy is aimed to destroy the tumor, but necrosis and edema occur concurrently. Conventional structural imaging techniques such as CT or MRI are unable to reliably distinguish persistent and recurrent tumor from necrosis or edema. T1-201 has been shown to be useful in the evaluation of the myocardial viability by comparing the early uptake and redistribution image. The aim of this study is to evaluate the clinical usefulness of the early uptake and delayed washout images of the T1-201 brain SPECT in the brain tumors. In the pathologically diagnosed various brain tumor patients, brain SPECT was done with rotating gamma camera 15 minutes and 3 hours after T1-201 injection, and the T1-201 uptake in the tumor was compared with the skull and scalp activity. In the glioblastoma multiforme, meningioma and metastatic tumor, the T1-201 uptake was higher than low grade glioma in both 15 minute and 3 hour images (p<0.02). In the low grade glioma,3 hour T1-201 uptake was significantly lower than 15 minute uptake (p<0.05) but in the glioblastoma, meningioma and metastatic tumor there was no significant difference. There was no significant difference in the T1-201 uptake among the glioblastoma, meningioma and metastatic tumors. In one matastatic tumor, T1-201 uptake was decreased after radiation therapy. T1-201 brain SPECT could distinguish the benign and malignancy, and seems to be useful in the follow-up after treatment. But one of the early or delayed SPECT seems not to be necessary for these purposes.

  • PDF

CXCR4-STAT3 Axis Plays a Role in Tumor Cell Infiltration in an Orthotopic Mouse Glioblastoma Model

  • Han, Ji-hun;Yoon, Jeong Seon;Chang, Da-Young;Cho, Kyung Gi;Lim, Jaejoon;Kim, Sung-Soo;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.539-550
    • /
    • 2020
  • Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.