• Title/Summary/Keyword: Glass solder

Search Result 51, Processing Time 0.026 seconds

A Study fur Wettability of Silicate Glasses on Silicon Nitride (질화규소와 실리케이트계 유리의 젖음성에 관한 연구)

  • 안병국
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.116-121
    • /
    • 2002
  • For the accumulation of a fundamental knowledge about the behavior of glass solder during the joining of ceramics, the wettability of solder on silicon nitride have been measured by sessile drop method. $SiO_2-MgO-Al_2O_3$ g1ass solder and oxynitride glass solders were selected as examples while silicon nitride which were used as substrates. Contact angle of solder on silicon nitride didn't decrease with time at high nitrogen content in the solder, but low nitrogen content in solders have the time-dependent property. Reason which contact angle of low nitrogen content in solders decrease on silicon nitride was that diffusion of nitrogen take place between solder and silicon nitride.

The Reliability of Optical Fiber Assembly Using Glass Solder

  • Lee, Jong-Jing;Kang, Hyun-Seo;Koh, Jai-Sang
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.147-151
    • /
    • 2004
  • In this study, an optical fiber assembly directly coupled with a laser diode or a photo diode is designed to confirm high reliable optical coupling efficiency of optical transmitter(Tx) and receiver(Rx). The optical fiber assembly is fabricated by soldering an optical fiber and a Kovar ferrule using a glass solder after inserting an optical fiber through a Kovar ferrule. The Kovar which has good welding characteristics is applied to introduce laser welding technique. The glass solder has excellent thermal characteristics such as thermal shift delamination compared with PbSn, AuSn solder previously used usually. Furthermore, the glass solder doesn't need fiber metalization and this enables low cost fabrication. However, the glass soldering is high temperature process over 35$0^{\circ}C$ and the convex shape after solidification due to surface tension causes the stress concentration on optical fiber. The stress concentration on the optical fiber increases the optical insertion loss and possibility of crack formation. The shape of glass solder was designed referring to 2-D Axi-symmetric FEM simulation. To test the mechanical reliability, mechanical vibration test and shock test were done according to Telcorida GR-468-Core protocol. After each test, the optical loss of the stress distributed fiber assembly didn't exceed 0.5 dB, which passes the test.

  • PDF

A Study for Joining of Silicon Nitride with Crystallized Glass Solder of $SiO_2-Al_2O_3-MgO$ System ($SiO_2-Al_2O_3-MgO$계 결정화 유리 솔더에 의한 질화규소의 접합에 관한 연구)

  • 안병국
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.107-113
    • /
    • 2003
  • Joining of $Si_3N_4$ to $Si_3N_4$ with crystallized glass solder was studied. $SiO_2-Al_2O_3-MgO$ glass with $P_2O_5$ as a crystallizing reagent was used as a solder. To improve the hish temperature toughness of joined specimen, two stage heat treatment was applied to Joined sample for the crystallization of joined layer, Two factors, i.e. thickness of soldered layer and crystallization were taken and thier effects on joining strength were investigated by a SEM-EDX observation of joined interface and bending strength both at room and elevated temperatures. Obtained results are summarized as follows: (1) Nitrogen diffused from $Si_3N_4$ to solder during the Joining process. Average amount of nitrogen in soldered layer depended on the thickness of the soldered layer and increased with decrease of the thickness. (2) Joining strength of the specimen having a thinner soldered layer was stronger than that of thicker layer. This can be mainly attributed to the difference of the nitrogen content in the soldered layer. (3) Higher content of nitrogen in solder brought forth higher viscosity of the solder. Hence the crystallization of the solder become more difficult in thinner layer of the solder than thicker one. (4) Thus, the effect of crystallization was evaluated mostly by the thicker layer specimen. Crystallization of soldered layer improved markedly the fracure strength of joining at higher temperatures than the softening temperature of glass solder.

Processing and Electrical Properties of COG(Chip on Glass) Bonding Using Fine-pitch Sn-In Solder Bumps (미세피치 Sn-In 솔더범프를 이용한 COG(Chip on Glass) 본딩공정 및 전기적 특성)

  • Choe Jae Hun;Jeon Seong U;Jeong Bu Yang;O Tae Seong;Kim Yeong Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.103-105
    • /
    • 2003
  • COG (Chip on Glass) technology using solder bump reflow has been investigated to attach IC chip directly on glass substrate of LCD panel. As It chip and LCD panel have to be heated to reflow temperature of the so]der bumps for COG bonding, it is necessary to use low-temperature solders to prevent the damage of liquid crystals of LCD panel. In this study, using the Sn-52In solder bumps of $40{\mu}m$ pitch size, solder joints between Si chip and glass substrate were made at temperature below $150^{\circ}C$. The contact resistance of the solder joint was $8.58m\Omega$, which was much lower than that of the joint made using the conventional ACF bonding technique. The Sn-52In solder joints with underfill showed excellent reliability at a hot humid environment.

  • PDF

A Study on the Fluxless Bonding of Si-wafer/Solder/Glass Substrate (Si 웨이퍼/솔더/유리기판의 무플럭스 접합에 관한 연구)

  • ;;;N.N. Ekere
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.305-310
    • /
    • 2001
  • UBM-coated Si-wafer was fluxlessly soldered with glass substrate in $N_2$ atmosphere using plasma cleaning method. The bulk Sn-37wt.%Pb solder was rolled to the sheet of $100\mu\textrm{m}$ thickness in order to bond a solder disk by fluxless 1st reflow process. The oxide layer on the solder surface was analysed by AES(Auger Electron Spectroscopy). Through rolling, the oxide layer on the solder surface became thin, and it was possible to bond a solder disk on the Si-wafer with fluxless process in $N_2$ gas. The Si-wafer with a solder disk was plasma-cleaned in order to remove oxide layer formed during 1st reflow and soldered to glass by 2nd reflow process without flux in $N_2$ atmosphere. The thickness of oxide layer decreased with increasing plasma power and cleaning time. The optimum plasma cleaning condition for soldering was 500W 12min. The joint was sound and the thicknesses of intermetallic compounds were less than $1\mu\textrm{m}$.

  • PDF

A Study for Joining of Alumina Soldered by SiO$_2$-CaO-A1$_2$O$_3$ Glasses (SiO$_2$-CaO-Al$_2$O$_3$계 유리 솔더에 의한 알루미나의 접합 현상에 관한 연구)

  • 안병국
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.35-41
    • /
    • 2003
  • Sintered alumina ceramics were joined by 2 kinds of SiO$_2$-CaO-A1$_2$O$_3$ glass solders having a similar expansivity as alumina. Wetting of glass/alumina was examined by sessile drop method. The observation of interface and bending strength related to alumina/glass/alumina systems were investigated by means of SEM/EDX and 4-point bending test. the result are summarized as follow: (1) Wetting of glass solders on alumina was good at temperatures higher than 145$0^{\circ}C$. (2) When the joining temperature wan high, diffusion and/or reactions between solder md alumina took place at the interface. These diffusions and reactions occurring at the interface greatly affected the bending strength of joining body. (3) Highest strength corresponding to 80% that of alumina was obtained by the solder of 35SiO$_2$-35CaO-30A1$_2$O$_3$(wt%) glass.

Interconnection Technology Based on InSn Solder for Flexible Display Applications

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.387-394
    • /
    • 2015
  • A novel interconnection technology based on a 52InSn solder was developed for flexible display applications. The display industry is currently trying to develop a flexible display, and one of the crucial technologies for the implementation of a flexible display is to reduce the bonding process temperature to less than $150^{\circ}C$. InSn solder interconnection technology is proposed herein to reduce the electrical contact resistance and concurrently achieve a process temperature of less than $150^{\circ}C$. A solder bump maker (SBM) and fluxing underfill were developed for these purposes. SBM is a novel bumping material, and it is a mixture of a resin system and InSn solder powder. A maskless screen printing process was also developed using an SBM to reduce the cost of the bumping process. Fluxing underfill plays the role of a flux and an underfill concurrently to simplify the bonding process compared to a conventional flip-chip bonding using a capillary underfill material. Using an SBM and fluxing underfill, a $20{\mu}m$ pitch InSn solder SoP array on a glass substrate was successfully formed using a maskless screen printing process, and two glass substrates were bonded at $130^{\circ}C$.

COG(chip on glass) 구조에서 유리를 투과하는 레이저 조사 방식에 의한 area array type 패키지의 마운팅 공정

  • 이종현;김원용;이용호;김영석
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.07a
    • /
    • pp.119-126
    • /
    • 2001
  • Chip-on-glass(COG) mounting of area array electronic packages was attempted by heating the rear surface of a contact pad film deposited on a glass substrate. The pads consisted of an adhesion(i.e. Cr or Ti) and a top coating layer(i.e. Ni or Cu) was heated by an UV laser beam transmitted through the glass substrate. The laser energy absorbed on the pad raised the temperature of a solder ball which is in physical contact with the pad, forming a reflowed solder bump. The effects of the adhesion and top coating layer on the laser reflow soldering were studied by measuring temperature profile of the ball during the laser heating process. The results were discussed based on the measurement of reflectivity of the adhesion layer. In addition, the microstructures of solder bumps and their mechanical properties were examined.

  • PDF

A New COG Technique Using Solder Bumps for Flat Panel Display

  • Lee, Min-Seok;Kang, Un-Byoung;Kim, Young-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1005-1008
    • /
    • 2003
  • We report a new FCOG (flip chip on glass) technique using solder bumps for display packaging applications. The In and Sn solder bumps of 40 ${\mu}m$ pitches were formed on Si and glass substrate. The In and Sn bumps were bonded at 125 at the pressure of 3 mN/bump. The metallurgical bonding was confirmed using cross-sectional SEM. The contact resistance of the solder joint was 65 $m{\Omega}$ which was much lower than that of the joint made using the conventional ACF bonding technique. We demonstrate that the new COG technique using solder bump to bump direct bonding can be applied to advanced LCDs that lead to require higher quality, better resolution, and lower power consumption.

  • PDF

Study on the solution for the overflow of molten solder during the soldering of fuse cap through CFD analysis (전산유체해석을 통한 퓨즈캡 솔더링 시의 용융솔더 넘침 문제 해결방안 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.31-36
    • /
    • 2018
  • Fuses are used to protect electric circuits or devices from excess current. Glass-tube fuses are typically used, but problems have arisen due to the mandated switch from conventional solder to lead-free solder. This study used CFD to simulate the phenomenon of molten solder being poured out of a fuse during the soldering process for a fuse cap and fuse element. In addition, a method is proposed to prevent solder from overflowing, and its effectiveness was verified based on the analysis results. The results show that a sufficient increase of the temperature inside the glass tube before soldering and gravity can help to prevent the solder from overflowing.