• Title/Summary/Keyword: Glass mold

Search Result 297, Processing Time 0.031 seconds

Preparation of Machinable Ceramics Using Domestic Pyrophyllite (국내산 납석을 이용한 Machinable Ceramics의 제조)

  • 정창주;정회준;양삼열
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.531-540
    • /
    • 1991
  • In this study, high quality machinable ceramics was prepared from the K2O-MgO-Al2O3-SiO2-B2O3-F glass system using domestic pyrophyllite. The mixture of pyrophyllite and additives was melted at 1450$^{\circ}C$ for 1 hour and formed in a graphite mold. The base glass was heat-treated at 600$^{\circ}C$ to 1200$^{\circ}C$ with interval of 50$^{\circ}C$ for 3 hours identified by XRD. Crystalline phase were confirmed by XRD and their microstructure was observed by SEM. The glass ceramics which was prepared by heat treatment of base glass at 1150$^{\circ}C$ for short time has good physical, mechanical, thermal, chemical properties and machinability.

  • PDF

Improvement of Insert Molding for Refrigerator Glass Shelves Using Numerical Analysis (수치해석을 이용한 냉장고용 유리선반 성형용 인서트 금형의 개선)

  • Han, Seong-Ryeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.50-57
    • /
    • 2016
  • Refrigerator glass shelves are manufactured by Insert Injection Molding. The current process of injection of glass into the mold induces movement of the core, on urethane springs. Defects in the product can result from too low a force being transmitted from the springs. To solve this problem, the force on the moving core and the injection molding pressure were subjected to numerical analysis. Based on this, the number of urethane springs as well as their hardness was changed to improve the situation. The number of springs was changed from 6 to 4. The diameter of the springs was increased from ${\emptyset}75$ to ${\emptyset}100$, and the hardness was increased from 70 (shore A) to 90 (shore A). These improvements caused the force on the molding core to increase by approximately 65,442 N. The proportion of defects decreased by 66%.

Effect of surface toughness on the interfacial adhesion energy between glass wafer and UV curable polymer for different surface roughness (표면거칠기에 따른 글래스 웨이퍼와 UV 경화 폴리머사이의 계면접착 에너지 평가)

  • Jang, Eun-Jung;Hyun, Seoung-Min;Choi, Dae-Geun;Lee, Hak-Joo;Park, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.40-44
    • /
    • 2008
  • The interfacial adhesion energy between resist and a substrate is very important due to resist pull-off problems during separation of mold from a substrate in nanoimprint process. And effect of substrate surface roughness on interfacial adhesion energy is very important. In this paper, we have treated glass wafer surface using $CF_4$ gas for increase surface roughness and it has tested interfacial adhesion properties of UV resin/glass substrate interfaces by 4 point bending test. The interfacial adhesion energies by bare, 30, 60 and 90 sec surface treatments are 0.62, 1.4, 1.36 and 2 $J/m^2$, respectively. The test results showed quantitative comparisons of interfacial fracture energy (G) effect of glass wafer surface roughness.

  • PDF

Modeling and Replication of Microlens Arrays Fabricated by a Modified LIGA Process (변형 LIGA 공정을 통해 제작된 마이크로 렌즈 어레이의 모델링 및 성형)

  • Kim D. S.;Lee H. S.;Lee B. K.;Yang S. S.;Lee S. S.;Kwon T. H.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.34-41
    • /
    • 2006
  • Microlens arrays were fabricated by a modified LIGA process composed of the exposure of a PMMA (Polymethylmethacrylate) sheet to deep x-rays and subsequent thermal treatment. A successful modeling and analyses for microlens formation were presented according to the experimental procedure. A nickel mold insert was fabricated by the nickel electroforming process on the PMMA microlens arrays fabricated by the modified LIGA process. For the replication of microlens arrays having various diameters with different foci on the same substrate, both hot embossing and microinjection molding processes have been successfully utilized with the fabricated mold insert. Replicated microlenses showed very good surface roughness with the order of 1 nm. The focal lengths of the injection molded microlenses were successfully estimated theoretically and also measured experimentally.

Effect on the residual stress of cure conditions in an epoxy system

  • Yu, Kyung-Bee;Seo, Sang-Ha;Kim, Young-Un;Moon, Chang-Kwon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.233-236
    • /
    • 2006
  • A dilatometer was used to investigate the effect of cure conditions and the presence of filler in an epoxy system. These studies showed shrinkage in the cured epoxy when heating it through the glass transition temperature region. The magnitude of the shrinkage, related to stress build up in the epoxy during curing, was influenced by the processing conditions, filler presence and the nature of the mold used to contain the resin. Cure and cyclic cure at a lower temperature, prior to a post cure, decreased the magnitude of observed shrinkage. Cure shrinkage decreased with number of cyclic cure. Post cured samples outside the mold led to less shrinkage compared with sample in the mold. And sample containing kaolin filler showed less shrinkage than unfilled sample.

  • PDF

Fundamental Study on Deformation Behavior of the Nano Structure for Application to the Hyper-fine Pattern and Mold Fabrication (극미세 Mold 및 패턴 제작물 위한 나노변형의 기초연구)

  • 이정우;윤성원;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.333-336
    • /
    • 2002
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numberical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and bur was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-l0nm. The result of the investigation will be applied to the fabrication of the hyper-fine pattern and mold.

  • PDF

3-Dimensional Thermoforming Computer Simulation Considering Orthotropic Property of Film

  • Son, Hyun-Myung;Yoon, Seok-Ho;Lee, Ki-Ho;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.57 no.3
    • /
    • pp.114-120
    • /
    • 2022
  • The tensile properties of the extruded PC film were measured in the extrusion direction and perpendicular to the extrusion direction. The measured properties were the elastic modulus and Poisson's ratio at the glass transition temperature of PC. The measured orthotropic properties of the film were used for the computer simulation of vacuum forming. In this simulation, three mold shapes were tested: dome, trapezoid, and cubic, and the vacuum was applied between the mold surface and the heated film. The stress, strain, thickness, and stretch ratio distributions of the film in different mold shapes were observed and compared. The thermoforming simulation method used in this study and the obtained results, considering the determined orthotropic properties, can be applied to the thermoforming of various three-dimensional shapes.

Study on Ultra-precision Grinding of EL-Max Material for Hot Press Molding (핫 프레스 성형용 EL-Max 소재 초정밀 연삭 가공에 관한 연구)

  • Park, Soon Sub;Ko, Myeong Jin;Kim, Geon Hee;Won, Jong Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1267-1271
    • /
    • 2012
  • Demand for optical glass device used for lighting could increase rapidly because of LED lighting market growth. The optical glass devices that have been formed by hot press molding process the desired optical performance without being subjected to mechanical processing such as curve generation or grinding. EL-Max material has been used for many engineering applications because of their high wear resistance, high compressive strength, corrosion resistant and very good dimensional stability. EL-Max is very useful for a glass lens mold especially at high temperature and pressure. The performance and reliability of optical components are strongly influenced by the surface damage of EL-Max during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified EL-Max glass lens mold. To get the required qualified surface of EL-Max, the selection of type of the diamond wheel is also important. In this paper, we report best grinding conditions of ultra-precision grinding machining. The grinding machining results of the form accuracy and surface roughness have been analyzed by using Form Talysurf and NanoScan.

Prediction of Mechanical Property of Glass Fiber Reinforced Polycarbonate and Evaluation of Warpage through Injection Molding (유리섬유로 강화된 폴리카보네이트의 기계적 물성예측 및 사출성형을 통한 휨의 평가)

  • Moon, Da Mi;Choi, Tae Gyun;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.708-713
    • /
    • 2014
  • Most plastics products are being produced by injection molding process. However, mold shrinkage is inevitable in injection molding process and it deteriorates dimensional quality through deflections and warpages. Mold shrinkage depends upon the material property of resin as well as injection molding condition. In this study, material property of resin has been predicted for glass fiber reinforced polycarbonate to control the warpage, and computer simulation of injection molding has been performed using predicted property. It was observed that the deflection of part decreased by the glass fiber reinforced resin. In order to verify the validity of this method and confidence of results, experiments of injection molding were performed. The results of experiments and computer simulations showed good agreement in their tendency of deflections. Consequently, it was concluded that the method of designing the material property of resin conducted in this study can be utilized to control the dimensional accuracy of injection molded products.

A Study on Thermal Deformation Compensation in the Molding of Aspheric Glass Lenses (비구면 유리렌즈 열변형 보정에 관한 연구)

  • Lee, Dong-Kil;Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Hak-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.22-26
    • /
    • 2010
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized increase gradually. Generally, the aspheric glass lens is manufactured by Glass Molding Press (GMP) method using tungsten carbide (WC) mold core. In this study, the thermal deformation which was occurred by GMP process was analyzed and applied it to compensate the aspheric glass lens. The compensated lens was satisfied that can be applied to the actual specifications.