• 제목/요약/키워드: Glass mold

검색결과 295건 처리시간 0.034초

순차이송 GMP 방식용 유리렌즈 금형의 열응력에 관한 연구 (A Study on the Thermal Stresses of the Glass Lens Mold Using in Progressive GMP Process)

  • 장성호;이영민;신광호;윤길상;정우철;정태성;허영무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.289-292
    • /
    • 2007
  • To prevent the damage of glass lens molds and deterioration of glass lenses using in progressive GMP process, a thermal stress and a deformation of the glass lens molds at forming temperature should be considered in the design step. In this study, as a fundamental study to develop a multi cavity mold used in an aspheric glass lens molding, a heat transfer and a thermal stress analysis were carried out for the case of one cavity glass lens mold used in progressive GMP process. Finally, using analysis results, we estimated the thermal stress in a glass lens mold and predicted a modified height of guide ring that determines the forming height of a glass lens.

  • PDF

비구면 유리 렌즈 금형의 열응력 해석 (Thermal stress analysis for an aspheric glass lens mold)

  • 이영민;장성호;허영무;신광호;윤길상;정태성
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.125-131
    • /
    • 2008
  • In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical GMP processes were developed with an eye to mass production of precision optical glass parts by molding press. Generally because the forming stage in a GMP process is operated at high temperature above $570^{\circ}C$, thermal stresses and deformations are generated in the aspheric glass lens mold that is used in GMP process. Thermal stresses and deformations have negative influences on the quality of a glass lens and mold, especially the height of the deformed glass lens will be different from the height of designed glass lens. To prevent the problems of a glass lens mold and the glass lens, it is very important that the thermal stresses and deformations of a glass lens mold at high forming temperature are considered at the glass molds design step. In this study as a fundamental study to develop the molds used in an aspheric glass lens fabrication, a heat transfer and a thermal stress analysis were carried out for the case of one cavity glass lens mold used in progressive GMP process. Finally using analysis results, it was predicted the height of thermally deformed guide ring and calculated the height of the guide ring to be modified, $64.5{\mu}m$. This result was referred to design the glass lens molds for GMP process in production field.

PTCR을 이용한 3-D Glass 열성형 금형의 내부 온도 측정에 관한 연구 (Study of Mold Internal Temperature Measurement Using PTCR for 3-D Glass Heat Forming)

  • 이호순;안해원;김시균;김기만;최성대
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.146-152
    • /
    • 2017
  • In order to make 3-D glass from 2-D glass for mobile device windows, a mold is used for heat forming. In this process, the temperature of the glass is very important. However, measuring the temperature of the glass inside the mold is very difficult owing to the mold structure and the high temperature. The purpose of this study is to measure the temperature inside the mold by using Process Temperature Control Rings (PTCR) and to compensate for temperature differences in the heat forming machine and inside the mold. The measuring method uses the ceramic material's shrinkage characteristics, which makes it possible to measure the temperature inside the mold at various locations.

Mold 법에 의해 제작된 FED용 전계에미터어레이의 특성 분석 (Fabrication & Properties of Field Emitter Arrays using the Mold Method for FED Application)

  • 류정탁;조경제;이상윤;김연보
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.347-350
    • /
    • 2001
  • A typical Mold method is to form a gate electrode, a gate oxide, and emitter tip after fabrication of mold shape using wet-etching of Si substrate. In this study, however, new Mold method using a side wall space structure is used in order to make sharper emitter tip with a gate electrode. Using LPCVD(low pressure chemical vapor deposition), a gate oxide and electrode layer are formed on a Si substrate, and then BPSG(Boro phospher silicate glass) thin film is deposited. After, the BPSG thin film is flowed into a mold as high temperature in order to form a sharp mold structure. Next TiN thin film is deposited as a emitter tip substance. The unfinished device with a glass substrate is bonded by anodic bonding techniques to transfer the emitters to a glass substrate, and Si substrate is etched using KOH-deionized water solution. Finally, we made sharp field emitter array with gate electrode on the glass substrate.

  • PDF

Numerical and Experimental Investigation of the Heating Process of Glass Thermal Slumping

  • Zhao, Dachun;Liu, Peng;He, Lingping;Chen, Bo
    • Journal of the Optical Society of Korea
    • /
    • 제20권2호
    • /
    • pp.314-320
    • /
    • 2016
  • The glass thermal forming process provides a high volume, low cost approach to producing aspherical reflectors for x-ray optics. Thin glass sheets are shaped into mirror segments by replicating the mold shape at high temperature. Heating parameters in the glass thermal slumping process are crucial to improve surface quality of the formed glass. In this research, the heating process of a thermal slumping glass sheet on a concave parabolic mold was simulated with the finite-element method (FEM) to investigate the effects of heating rate and soaking temperature. Based on the optimized heating conditions, glass samples 0.5 mm thick were formed in a furnace with a steel concave parabolic mold. The figure errors of the formed glass were measured and discussed in detail. It was found that the formed glass was not fully slumped at the edges, and should be trimmed to achieve better surface deviation. The root-mean-square (RMS) deviation and peak-valley (PV) deviation between formed glass and mold along the axial direction were 2.3 μm and 4.7 μm respectively.

초경합금의 초정밀 연삭특성에 관한 연구 (A Study on the Ultra Precision Grinding Characteristics of Tungsten Carbide)

  • 정상화;차경래;김현욱;김종태;이봉주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1737-1740
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this thesis, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base core of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

초정밀 가공기를 이용한 $LSU_{CL}$ 코어 가공에 관한 연구 (A Study on the Ultra Precision Grinding Characteristics of Tungsten Carbide-base $LCU_{CL}$ Core)

  • 정상화;차경래;김현욱;이봉주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1910-1913
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this paper, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base cores of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

초경합금 소재 $LCU\_CL$ 코어의 초정밀 연삭 특성에 관한 연구 (A Study on Ultra Precision Grinding Characteristics of Tungsten Carbide $LCU\_CL$ Core)

  • 정상화;차경래;김현욱;이봉주
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.307-312
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this thesis, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base core of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

Transcription Characteristics of Mold Surface Topography in the Molding of Aspherical Glass Lenses

  • Cha, Du-Hwan;Hwang, Yeon;Kim, Jeong-Ho;Kim, Hye-Jeong
    • Journal of the Optical Society of Korea
    • /
    • 제13권2호
    • /
    • pp.213-217
    • /
    • 2009
  • The transcription characteristics of the mold surface in the molding of aspherical glass lenses for camera phone modules have been investigated experimentally. The surface topographies of both the form and the roughness were compared between the mold and the molded lens. For the form topography, the molded lens showed a transcription ratio of 93.4% against the mold, which is obtained by comparing the form error (PV) values of the mold and the molded lens. The transcription characteristics of the roughness topography were ascertained by bearing ratio analysis.

GMP 공정용 3 cavity 유리 렌즈 금형의 열변형에 관한 연구 (A study on the thermal deformation of 3 cavity GMP mold for glass lens)

  • 장성호;허영무;신광호;정태성
    • Design & Manufacturing
    • /
    • 제2권6호
    • /
    • pp.38-42
    • /
    • 2008
  • Recently, the demands of digital camera and miniature camera module for mobile-phone is increased significantly. Lenses which is the core component of optical products are made by the injection molding(plastic lens) or GMP(glass lens). Plastic lens is not enough to improve the resolution and performance of optic parts. Therefore, the requirement of glass lens is increased because it is possible to ensure the high performance and resolution. In this paper, the thermal stress analysis of 3 cavity GMP mold for molding glass lens was performed for estimating the thermal stress and amount of deformation. Finally, the modification plan based on the analysis results was deducted.

  • PDF