• Title/Summary/Keyword: Glass mold

Search Result 297, Processing Time 0.028 seconds

A Study on the sand mold compression strength of the N-process mold mixed with JA-EUN-DO sand. (자은도사(慈恩島砂)를 이용(利用)한 N-Process의 주형강도(鑄型强度)에 관(關)한 연구(硏究))

  • Lee, Won-Sik
    • Journal of Korea Foundry Society
    • /
    • v.4 no.2
    • /
    • pp.102-107
    • /
    • 1984
  • The variations of the mold compression strength were studied by varing the contents of the silicon powder and water glass, silion purities, and molecule rates of the water glass, when domestic JA EUN DO sand is mixed with water glass (sodium silicate) and metallic silicon or ferro - silicon powder by the self - hardening N - PROCESS method. The results obtained from this experiment are as follows; 1) The compression strength of the mold used with metalic powder was higher and more stable than to be used ferro - silicon powder. 2) 6% water glass of 2.8 molecule rate and 1.5% of ferro - silicon of 75% purity for the N - PROCESS used with JA EUN DO sand was suitable mixing rate. 3) The compression strength increased with self - hardening time, and the PH values of the mixture of silicon powder and water glass did not change after 2 hours, but the compression strength increased steadily due to the reaction of remained silicon. 4) It is recommended to take 24 hours for self - hardening time at least.

  • PDF

DLC Coating Effect of WC Core Surface for Glass Molding Lens (비구면 Glass 렌즈 성형용 초경합금(WC) 코어의 DLC 코팅 효과)

  • Kim, Hyun-Uk;Jeong, Sang-Hwa;Park, Yong-Pil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1050-1054
    • /
    • 2006
  • There have been intensive and continuous efforts in the field of DLC coating process because of their feature, like high hardness, high elasticity, abrasion resistance and chemical stability and have been applied widely the industrial areas. In this research, optimal grinding condition was investigated using Microlens Process Machine for the development of aspheric glass lens which is to be used for mobile phone module with 3 mega pixel and 2.5X optical zoom, and tungsten carbide(WC) mold cote was manufactured using high performance ultra precision machining and the effects of DLC coating on the form accuracy(PV) and surface roughness(Ra) of WC mold core was evaluated.

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.

LCD Glass strain Simulation For Large Size Imprint Equipment (대면적 임프린트 장비를 위한 LCD Glass 변형 시뮬레이션 연구)

  • Song, Young-Joong;Shin, Dong-Hoon;Im, Hong-Jae;Jang, Si-Yeol;Lee, Kee-Sung;Jeong, Jay-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1626-1631
    • /
    • 2007
  • The purpose of the study is to simulate the displacement of the LCD glass during process of a large size imprint. During this process, a small temperature variation makes thermal stress, which causes the horizontal variation of mold and glass. During alignment process to fix the LCD glass on a alignment stage, the vertical displacement is made by the absorption pressure and the shear stress. This study simulates the horizontal displacement of mold and glass due to temperature variation, the vertical displacement depending on the shape of absorption surface fixing the LCD glass in the alignment process, and the horizontal and vertical displacement which occurs in the LCD glass at the alignment process. Algor which is a FEM code for a framework simulation was applied. Temperature variation above ${\pm}$ $0.1^{\circ}C$ on mold and glass causes the horizontal displacement of 150nm due to thermal expansion. The vertical displacement due to the circular is ten times of the case of rectangular absorption nozzle. The displacement of the LCD glass in the alignment process is about 49nm.

  • PDF

Form Error Compensation of Aspheric lens considering Thermal Deformation on Glass Molding Press ( I ) (Glass Lens 가압성형의 열 변형에 의한 비구면 Lens 형상보정 ( I ))

  • Lee, Hak-Suk;Lee, Dong-Kil;Park, Jong-Rak;Kim, Hye-Jung;Kim, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.354-354
    • /
    • 2008
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized is gradually increasing. Generally, the aspheric glass lens is manufactured by GMP(Grass Molding Press) method using WC(tungsten carbide) mold core. In this study, the thermal deformation which occurs in the cooling step of GMP was considered, and it was compensated the form of mold core. The lens which was molded by compensated mold core was satisfied that can be applied to the actual specifications.

  • PDF

Fabrication of Field-Emitter Arrays using the Mold Method for FED Applications

  • Cho, Kyung-Jea;Ryu, Jeong-Tak;Kim, Yeon-Bo;Lee, Sang-Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.4-8
    • /
    • 2002
  • The typical mold method for FED (field emission display) fabrication is used to form a gate electrode, a gate oxide layer, and emitter tip after fabrication of a mold shape using wet-etching of Si substrate. However, in this study, new mold method using a side wall space structure was developed to make sharp emitter tips with the gate electrode. In new method, gate oxide layer and gate electrode layer were deposited on a Si wafer by LPCVD (low pressure chemical vapor deposition), and then BPSG (Boro phosphor silicate glass) thin film was deposited. After then, the BPSG thin film was flowed into the mold at high temperature in order to form a sharp mold structure. TiN was deposited as an emitter tip on it. The unfinished device was bonded to a glass substrate by anodic bonding techniques. The Si wafer was etched from backside by KOH-deionized water solution. Finally, the sharp field emitter array with gate electrode on the glass substrate was formed.

Optical Properties of Aspheric Glass Lens using DLC Coated Molding Core (성형용 코어면 DLC 코팅에 의한 비구면 Glass렌즈 광학적 특성에 관한 연구)

  • Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Dong-Gil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho;Jeong, Sang-Hwa
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.362-366
    • /
    • 2007
  • In this research, the optimal grinding condition has been obtained by design of experiment (DOE) fur the development of aspheric lens for the 3 Mega Pixel, 2.5x optical zoom camera-phone module. Also, the tungsten carbide (WC) mold was processed by the method of ultra precision grinding under this optimal grinding condition. The influence of diamond-liked carbon (DLC) coating on form accuracy (PV) and surface roughness (Ra) of the mold was evaluated through measurements after DCL coating using ion plating on the ground mold. Also, aspheric glass lenses were molded, some before DLC coating of the mold and some after the DLC coating. The optical characteristics of each sample, molded by the different molds, were compared with each other.