• Title/Summary/Keyword: Glass fiber properties

Search Result 553, Processing Time 0.028 seconds

The Roles of Reinforcing Fibers on the Performance of Automotive Brake Pads (자동차용 마찰재의 성능에 미치는 강화섬유의 역할)

  • Lim, Hyun-Woo;Yoon, Ho-Gyu;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.173-179
    • /
    • 2000
  • The friction and wear characteristics of brake friction materials reinforced with aramid fiber, carbon fiber, glass fiber, and potassium titanate whiskers were investigated using a pad-on-disk type friction tester. In particular, the morphology of rubbing surfaces was carefully investigated to correlate the friction performance and properties of transfer films. The aramid fiber reinforced specimen showed severe oscillation of friction coefficient at low speed and low applied pressure. The carbon fiber reinforced specimen showing better friction stability exhibited uniform and stable transfer film than any other specimens. The glass fiber reinforced specimen showed unstable friction changes at high speed and high-applied pressure and the non-uniform transfer film was observed in both friction material and rotor surface. The potassium titanate whiskers reinforced specimen showed stable coherent transfer film. The wear test exhibited the potassium titanate whiskers reinforced specimen was lowest in wear amount and glass fiber reinforced specimen showed the severe wear.

  • PDF

An Experimental Study on Physical and Mechanical Properties of Steel Fiber Reinforced Concrete Containing Waste Glass (폐유리를 혼입한 강섬유보강 콘크리트의 물리ㆍ역학적 특성에 관한 실험적 연구)

  • 박승범;이봉춘;조광연;이택우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.903-908
    • /
    • 2002
  • The production of waste glasses has been increased with the development of industry. The utilization of waste glass for concrete can cause the concrete to be cracked and to be weakened due to an expansion by alkali-silica reaction(ASR). When used the fibers with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass. In this study, we conducted basic experimental research to analyze the possibilities of recycling of amber waste glass as fine aggregates for steel fiber reinforced concrete. Test results of fresh concrete. slump is decreased because grain shape is angular and air content is increased due to involving small size particles so much in waste glasses. Also. tensile and flexural strengths increased as the content of steel fibers increased. In conclusion, the content of waste glass below 40% is reasonable and usage of pertinent admixture is necessary to obtain workability or air content.

  • PDF

Evaluation of Impregnating and Mechanical Properties for Glass Fiber/Polycarbonate Composites Depending on Molecular Weight of Matrix (유리섬유/폴리카보네이트 복합재료의 기지 분자량에 따른 함침 및 기계적 물성 평가)

  • Kim, Neul-Sae-Rom;Jang, Yeong-Jin;Lee, Eun-Soo;Kwon, Dong-Jun;Yang, Seong Baek;Lee, Jungeon;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Fiber-reinforced thermoplastic composites are applied to transport industries to lightweight of body, and applications will be expanded gradually. In this study, the impregnation and mechanical properties of continuous glass fiber (GF) reinforced polycarbonate (PC) composites were evaluated with different molecular weights of PC. The continuous GF reinforced PC composite were prepared by using GF fabric and PC film via continuous compression molding method. The melting flow index and tensile strength of PC matrix were evaluated with different molecular weights. Mechanical properties (tensile, flexural, and compressive) and pore rate of GF/PC composite were evaluated with different molecular weights of PC. The fracture behavior was analyzed to fracture surface of GF/PC composite using FE-SEM images. As these results, it was condition of representing the best mechanical property that the GF/PC composite was prepared by using PC of 20,000 g/mol as matrix.

Study of Mechanical Properties and Porosity of Composites by Using Glass Fiber Felt (유리섬유 부직포 사용에 따른 복합재의 기공률 및 물성에의 영향 분석)

  • Lee, Ji-Seok;Yu, Myeong-Hyeon;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.42-46
    • /
    • 2022
  • In this study, when the carbon fiber composite was manufactured, the correlation between the porosity and mechanical properties according to the number of glass fiber felts laminated together and the stacking sequence was confirmed. The carbon fiber composite was manufactured by stacking glass fiber felts, which are highly permeable materials, and using vacuum assisted resin transfer molding (VARTM). Porosity was measured by photographing the cross-section of the specimen with an optical microscope and then using porosity calculation code of MATLAB, and mechanical properties were measured for tensile strength, modulus by tensile test. Furthermore, Pearson correlation coefficient between porosity and mechanical properties was calculated to confirm the correlation between two variables. As a result, the number of glass fiber felt increased and the distance from the center of laminated composites increased, the porosity increasing were confirmed. In addition, tensile strength/modulus showed a weak positive correlation with porosity. Also, in order to confirm the effect of only porosity on tensile strength and modulus, mechanical properties calculated by CLPT (Classical Laminate Plate Theory) and experimental values were compared, and the difference in tensile strength showed a strong positive correlation with porosity and the difference in modulus showed a weak positive correlation with porosity.

Properties of Randomly Oriented Chopped E-glass Reinforced Unsaturated Polyester Based Resin Composite -Effect of Length/Content of E-Glass Fiber and Number of Stacking- (랜덤상태의 E-유리 단섬유 강화 불포화 폴리에스터 기반 수지 복합재료의 물성 - E-유리 단섬유의 길이와 함량 및 적층수의 영향 -)

  • Park, Jin-Myung;Park, Young-Gwang;Lee, Young-Hee;Seo, Dae-Kyung;Lee, Jang-Hun;Kim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.27 no.3
    • /
    • pp.165-174
    • /
    • 2015
  • To develop automobile parts, the unsaturated polyester based matrix resin(PR)/reinforcement(randomly oriented chopped E-glass fiber, GF) composites were prepared using sheet molding compound(SMC) compression molding. The effects of GF length(0.5, 1.0 1.5 and 2.0inch)/content (15, 20, 25, 30wt%) and number of ply(3, 4 and 5) on the specific gravity and mechanical properties of PR/GF composites were investigated in this study. The optimum length of GF was found to be about 1.0inch for achieving improved mechanical properties(tensile strength and initial modulus). The tensile strength and initial modulus of composites increased with increasing GF content up to 30wt%, which is favorable content range for SMC. The specific gravity, tensile strength/initial modulus, compressive strength/modulus, flexural strength/modulus and shear strength increased with increasing the number of ply up to 5, which is the maximum number of ply range for SMC. The effectiveness of ply number increased in the flexural strength > shear strength > compressive strength > tensile strength.

A Study on the Dielectric Properties of Glass Fiber-Reinforced Plastic Composites (유리 섬유 강화 복합재료의 유전 특성에 관한 연구)

  • Lee, B.S.;Whang, M.W.;Kim, J.S.;Cho, G.S.;Yuk, J.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1615-1617
    • /
    • 1996
  • In this study, epoxidized bisphenolic resins laminated with glass fiber mat(GFRP) are ivestigated on surface, bulk aspect and dielectric constant(${\varepsilon}'$ and ${\varepsilon}''$) vs. frequency characteristics with temperature. The investigation shows the different characteristics accordig to the attachments of fiber surface, filler content, matrix properties, and the others. Especially, dielectric properties of this sample are highly increased above $100^{\circ}C$ and decreased with the rise of frequency. There is a resonance at the high frequency region ($1MHz{\sim}10MHz$). So, dielectric properties show the shift with frequency and temperature. Dielectric properties of EGL 10 are higher than those of EGL 40 with the frequency. Generally, dielectric properties of EGL 10 are more unstable than those of EGL 40 on the shift of frequency and temperature.

  • PDF

Effect of Chemical Structure on Properties of UV-Cured Polyurethane Acrylates

  • Kim, Tae-U;Heo, Jae-Ho;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.04a
    • /
    • pp.213-216
    • /
    • 1996
  • The relationship between the chemical structure and properties of UV-cured polyurethane acrylate films has been investigated. Studies have been made on the effects of the molecular weight of polyol, the types of polyol and diluents on the properties such as tensile properties and thermal properties. The glass transition temperature decreased with increasing the molecular weight of polyol. However storage modulus increased by using the diluent containing rigid structure and multifunctional acrylate monomers.

  • PDF

Green Composites. I. Physical Properties of Ramie Fibers for Environment-friendly Green Composites

  • Nam Sung-Hyun;Netravali Anil N.
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.372-379
    • /
    • 2006
  • The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly 'green' composites. SEM micrographs of a longitudinal and cross sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young's modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to $160^{\circ}C$ with no decrease in tensile strength or Young's modulus. However, at temperatures higher than $160^{\circ}C$ the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9 %. These properties make ramie fibers suitable as reinforcement for 'green' composites. Also, the green composites can be fabricated at temperatures up to $160^{\circ}C$ without reducing the fiber properties.

Cooling Speed Effects of Fluoride Glasses (불화 유리의 냉각 속도 효과)

  • 류선윤
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.183-188
    • /
    • 1995
  • The properties of the glasses are not dominantly dependent on the chemical composition, temperature, and pressure but also on the thermal history. For example, electrical, thermal, optical, and mechanical properties are all known to be strongly dependent on the thermal history. Fluoride glasses have received a great deal of attention as candidate materials for an infra-red transmitting medium. A series of fluoride glasses and fibers were prepared under a nitrogen atmosphere. Thermal history effects of the fluoride glass fibers associated with the fast cooling rate employed during the fiber drawing process were discussed in terms of the glass temperatures and the fictive temperatures on the basis of the results obtained from the Differential Scanning Calorimeter (DSC) measurements of the fiber and bulk forms of the same chemical composition.

  • PDF

Effects of Filler Types and Content on Shrinkage Behavior of Polypropylene Composites

  • Jung, Chun-Sik;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.57 no.3
    • /
    • pp.107-113
    • /
    • 2022
  • The effects of fillers [talc, calcium carbonate, glass fiber, and EBR (ethylene-butene rubber)] on the shrinkage and mechanical properties of injection-molded polypropylene composites were investigated. The shrinkage correlated with the shape of the filler particles: at the same amount added, glass fibers with a large aspect ratio had the greatest effect on the shrinkage of polypropylene composites, followed by flake-shaped talc and granular calcium carbonate. It was confirmed that the addition of EBR rubber as an impact strength modifier reduced shrinkage proportionally to the added content. In addition, the addition of glass fiber resulted in the greatest increases in tensile and flexural strengths.