• Title/Summary/Keyword: Glass Transition

Search Result 1,071, Processing Time 0.031 seconds

Infrared Transmitting Glass Ceramics for Passive and Active Applications

  • Zhang, Xianghua;Adam, J.L.
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.48-54
    • /
    • 2007
  • Glass-ceramics transparent above $10\;{\mu}m$ in the infrared, have been synthesized. They are based on germanium and antimony sulphides or selenides associated to alkali halides. They are prepared by heating glass samples at temperatures above the glass transition, as a function of time. Ceramisation can be controlled, so that sub-100 nm crystals are generated in the glass matrix. Then, low light scattering is achieved and the transparency window of the original glass is maintained. When gallium sulphide is added, glass ceramics can be doped with rare-earth ions. Emissions from the $^4F_{3/2}$ and $^4I_{13/2}$ of $Nd^{3+}$ and $Er^{3+}$ ions, respectively, are more intense in glass-ceramics, as compared to their vitreous counterpart. Examination of band profiles and decaytimes show that rare-earth ions are embedded in both crystalline and glassy environments.

  • PDF

Lead free, Low temperature sealing materials for soda lime glass substrates in Plasma Display Panel (PDP)

  • Lee, Heon-Seok;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Yoon-Hee;Lee, Suk-Hwa;Kim, Il-Won;Lee, Jong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.373-376
    • /
    • 2008
  • New glass compositions for lead free, low temperature sealing glass frit was examined in $ZnO-V_2O_5-P_2O_5$ glass system which can be used sealing material for PDP to be made of soda lime glass substrates. Among many glass compositions, KFS-C glass showed low glass transition point (Tg) and good fluidity and adhesion characteristics when it was tested by flow button method at low temperature of $420^{\circ}C$. Its Tg was $317^{\circ}C$ and thermal expansion coefficient (CTE) was $70{\times}10^{-7}/K$. The glass frit was mixed with an organic vehicle to make a paste and it was dispensed and sealed with soda lime glass substrates at $420^{\circ}C$ for 10min. Sealed glass panels also showed good adhesion strength even sealed at low temperature of $420^{\circ}C$.

  • PDF

Synthesis of the Ni-doped ternary compound Ba(Fe1-xNix)2Se3

  • Park, Hyeon Beom;Shin, Soohyeon;Jung, Soon-Gil;Hwang, Doyeon;Lee, Hyoyoung;Park, Tuson
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.30-33
    • /
    • 2015
  • We report the synthesis of Ni-doped $BaFe_2Se_3$ single crystals by using a flux method. X-ray diffraction (XRD) of $Ba(Fe_{1-x}Ni_x)_2Se_3$ shows a gradual peak shift with an increase in the nominal Ni-doping rate, x = 0, 0.05, and 0.10, due to a decrease in unit-cell volume. All samples show a spin glass transition, and temperature dependence of magnetic susceptibility shows a negligible change in the spin-glass transition temperature ($T_g$) with Ni concentration x. The temperature dependence of electrical resistivity for $BaFe_2Se_3$ shows an insulating behavior, and the resistivity value at 295 K and the activation energy ($E_a$) obtained from the Arrhenius plot decrease with increasing x. These results suggest that the Ni doping can be effectively worked as a dopant for electron charge carriers, but is less efficient in controlling the magnetic property, such as spin glass transition, in the $BaFe_2Se_3$ compound.

Glass Transition Temperature of Poly(methyl methacrylate) Obtained with Ferrocene-Based Diimine Pd(II) Catalyst (Ferrocene-Based Diimine Pd(II) 촉매로 얻은 폴리(메틸메타크릴레이트)의 유리전이온도)

  • 박태학;이동호;김태정;박동규
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.410-414
    • /
    • 2002
  • The late transition Pd catalyst of low oxophilicity that has ferrocene -based diimine ligand for stabilization of center metal had been synthesized and applied for the polymerization of methyl methacrylate (MMA). In the presence of triisobutylaluminium (TIBA) for impurity scavenger, the effects of polymerization temperature and [TIBA]/[Pd] mole ratio on the yield and glass transition temperature ($T_g$) of PMMA had been examined. For 40~$50^{\circ}C$ of polymerization temperature and 2000~3000 of [TIBA]/[Pd] mole ratio, higher polymer yields were obtained. It was observed that ($T_g$) of PMMA is almost independent to the polymerization temperature but influenced by the [TIBA]/[Pd] mole ratio. With the examination of($T_g$) of PMMA with the structure of polymer, it had been found that T$_{g}$ of PMMA exhibits a linear relationship with the isotacticity of polymer.r.

Deposition of Heavy Metal Oxide Glass Thin Films by R.F. Magnetron Sputtering (스퍼터링 방법을 이용한 중금속 산화물 유리 박막의 증착)

  • Kim, Woong-Kwern;Heo, Jong;Je, Jung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.669-676
    • /
    • 1995
  • In this study, EO glass films were deposited by R.F. magnetron sputtering using EO glass target. The glass formation of the EO film was greatly dependent on the substrate temperature and the crystallization started at approximately 28$0^{\circ}C$. As the temperature of the substrate or the oxygen content in the sputtering gas increased, UV/VIS/NIR absorption edge moved toward longer wavelength. A wave guiding phenomenon was observed from the prism-coupler experiment and a fluorescence of 1.06${\mu}{\textrm}{m}$ originated from 4Fe3/2longrightarrow4I11/2 transition of Nd3+ was detected from the film containing Nd3+ ions.

  • PDF

The Effect of Oxygen Content on the Glass Forming Ability and Mechanical Properties of the Zr-based Amorphous Alloy Return Scrap (Zr기지 비정질 합금 스크랩의 비정질 형성능 및 기계적 성질에 미치는 산소함량의 영향)

  • Kim, Sung-Gyoo;Lee, Byung-Chul;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.35 no.4
    • /
    • pp.75-79
    • /
    • 2015
  • Commercial Zr-based amorphous alloy was recycled and oxygen was introduced during the recycling process. The oxygen content can have a great effect on the glass forming ability and the mechanical properties of the alloy. Therefore, it was closely examined. The initial oxygen content in the raw material was 1,244 ppm. It was increased to 3,789 ppm in the alloy after ten recycling processes. As the recycling processes were repeated, the oxygen content increased. Specifically, after four recycling processes, it increased sharply as compared to that after three recycling processes. After ten recycling processes, the glass transition temperature (Tg) increased from 613 K to 634 K and the crystallization temperature (Tx) increased from 696 K to 706 K. On the other hand, the super-cooled liquid region (${\Delta}T=Tx-Tg$) decreased slightly from 83 K to 72 K while the reduced glass transition temperature (Trg = Tg/Tm) was 0.63, remaining constant even when the oxygen content was increased. These results indicated that the increased oxygen content deteriorated the glass forming ability. The bending strength as determined in a three-point bending test showed a sharp decrease from 3,055 to 2,062 MPa as the oxygen content was increased from 1,244 ppm to 3,789 ppm; the extension was also decreased from 3.02 to 1.74 mm. These findings meant that the alloy became brittle.

Preparasion and Characterization of Chalcogenide Glass with IR-Transmittance (적외 광투과 Chalcogenide계 유리의 제조 및 특성)

  • 송순모;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1424-1432
    • /
    • 1995
  • Chalcogenide glasses having IR (8~12${\mu}{\textrm}{m}$) transmittance were prepared and their densities, thermal and mechanical properties, IR-transmittances and chemical durabilities were determined. Glass transition temperatures (Tg) of Ge-As-Se, Ge-As-Se-Te and Ge-SE-Te system glasses were in the range of 280~3$65^{\circ}C$, 210~236$^{\circ}C$ and 210~26$0^{\circ}C$, respectively. Crystallization temperature (Tc) of Ge-Se-Te system glass was in the range of 305~40$0^{\circ}C$. Their thermal expansion coefficients($\alpha$) were in the range of 11.7~15.2$\times$10-6/K, 15.4~16.0$\times$10-6/K and 17.4~27.8$\times$10-6/K, respectively. Their MOR, hardness and fracture toughness were in the range of 15.2~18.6MPa, 36.1~58.2Kg/$\textrm{mm}^2$, 1.0~1.3 MPa.mm1/2, 18.9~24.9 MPa, 40.9~65.1Kg/$\textrm{mm}^2$, 1.3~1.5 MPa.mm1/2, and 24.1~30.8 MPa, 40.9~86.0Kg/$\textrm{mm}^2$, 1.4~1.8 MPa.mm1/2, respectively. IR transmittance of Ge-Se-Te system glass was about 60%. Ge-O extrinsic absorption peaks at 8, 12 ${\mu}{\textrm}{m}$ were significantly eliminated by the addition of Mg. Chemical durabilities in deionizied water of Ge-Se-Te system glass were good and IR-transmittances decreased with leaching time and temperature.

  • PDF

Manufacture of Alkyl Acrylate Multi Core-shell Composite Particle (알킬 아크릴레이트계의 다중 Core-shell 복합입자의 제조)

  • Cho, Dae-Hoon;Choi, Sung-Il;Go, Hyun-Mi;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.16-25
    • /
    • 2011
  • Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomer such as methyl methacrylate (MMA), n-butyl methacrylate (BMA), and shell monomer such as MMA, BMA, stylene (St), 2-hydroxyl ethyl methacrylate (2-HEMA) and acrylic acid (AA) in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, morphology, tensile strength and elongation. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(BMA/St/AA) shell composite particle was excellent as 98%. In the case of the concentration of 0.03 wt% SDBS, the particle size of BMA core-(MMA/St/AA) shell composite particle was high as $0.47{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 2 points of glass transition temperatures appear for general core-shell composite particles. We showed that it is possible to adjust glass transition temperatures according to the kind and composition of the inner shell monomer that it is can be used as a adhesive binder material with improved adhesive power.