• Title/Summary/Keyword: Glass Transition

Search Result 1,075, Processing Time 0.023 seconds

Magnetic, Magneto-Optical, and Transport Properties of Ordered and Disordered 3d-Transition Metal Aluminide Films

  • Lee, Y.P.;Kim, K.W.;Rhee, J.Y.;Kudryavtsev, Y.V.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.1-6
    • /
    • 1998
  • The influence of the order-disorder structural transition on the magnetic and mageto-optical, and transport properties of Fe-Al and Co-Al alloy films has been investigated. The disordered states in the alloy films were prepared by vapor quenching deposition on glass substrates cooled by liquid nitrogen. The experimental study of the magento-optical properties of the ordered and disordered Fe-Al and Co-Al alloy films has been carried out in 1.05-5.0 eV energy range at room temperature. The transport properties have been measured in 2-300K temperature range with and without magnetic field of 0.5T. The influence of the order-disorder structural transition on the magnetic and magneto-optical properties was discussed by using the effective medium approximation and the structural defect approach. That on the temperature dependence of the resistivity was analyzed in a framework of the partial localization of the electronic states and the variable range hopping conductivity.

  • PDF

Prediction of Transition Temperature and Magnetocaloric Effects in Bulk Metallic Glasses with Ensemble Models (앙상블 기계학습 모델을 이용한 비정질 소재의 자기냉각 효과 및 전이온도 예측)

  • Chunghee Nam
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.363-369
    • /
    • 2024
  • In this study, the magnetocaloric effect and transition temperature of bulk metallic glass, an amorphous material, were predicted through machine learning based on the composition features. From the Python module 'Matminer', 174 compositional features were obtained, and prediction performance was compared while reducing the composition features to prevent overfitting. After optimization using RandomForest, an ensemble model, changes in prediction performance were analyzed according to the number of compositional features. The R2 score was used as a performance metric in the regression prediction, and the best prediction performance was found using only 90 features predicting transition temperature, and 20 features predicting magnetocaloric effects. The most important feature when predicting magnetocaloric effects was the 'Fe' compositional ratio. The feature importance method provided by 'scikit-learn' was applied to sort compositional features. The feature importance method was found to be appropriate by comparing the prediction performance of the Fe-contained dataset with the full dataset.

Effect of Chemical Structure on the Properties of UV-cured Polyurethane Acrylates Films

  • Kwon, Ji-Yun;Yoo, Hye-Jin;Kim, Han-Do
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.141-147
    • /
    • 2001
  • The effect of compositions of isophorone diisocyanate (IPDl)/4.4'-diphenylmethane diisocyalate (MDI) and polypropylene oxide diol (PPG, $M_w$: 3000)/1,4-butane diol (BD) on the properties of UV-cured polyurethane acrylate films based on 2-hydroxyethyl acrylate (HEA) was examined. UV-curable polyurethane acrylates were formulated from the prepolymer. trimethylol propane triacrylate (TMPTA) as a reactive diluent, and 1-hydroxycyclohexyl ketone (Irgacure 184) as a photoinitiator. Dynamic mechanical thermal properties and elastic properties of UV-cured polyurethane acrylates was fecund to depend on the chemical composition of IPDl/MDl and PPG/BD. As the BD content increased, the tensile storage modulus of all series samples increased significantly. The storage modulus increased in the order of samples A (IPDI based samples)> samples B (IPDI/MDl (7/3 molar ratio) based samples) > samples C (IPDI/MDl (5/5 molar ratio) based samples at the same composition. Two distinct louts modulus peaks for all samples are observed owing to the softs segment glass transition temperature ($T_gh$) and hard segment glass transition temperature ($T_gh$). The difference between $T_gh$, and $T_gh$, (Δ$T_g$) increases in the order of A > B > C at the same composition. In cycle test, the initial onset strain (%) was found to decrease with increasing BD content in PPG/BD and with increasing MDI content in IPDI/MDl.

  • PDF

Structure Development of Uniaxially Drawn Poly(trimethylene terephthalate)/ Poly(ethylene terephthalnte) Blends (일축 연신에 의한 폴리(트리메틸렌 데레프탈레이트)/ 폴리(에틸렌 데레프탈레이트) 블렌드의 구조 변화)

  • 전병환;김환기;강호종
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.67-76
    • /
    • 2004
  • The effects of drawing temperature and draw down ratio on thermal properties, crystallinity and orientation of poly(trimethylene terephthalate)/poly(ethylene terephthalate) (PTT/PET) 100/0 ,90/10, and 80/20 blends have been investigated. The crystallinity and glass transition temperature increased while cold crystallization temperature and cold enthalpy decreased due to the development of orientation and stress induced crystallization by the cord drawing. Introducing PET to PTT decreased the crystallinity of PTT. However, it enhanced the orientation of PTT/PET blends drawn at below the glass transition temperature of PET. This lead to the increase of tensile modulus and tensile strength of PTT/PET blends. The shrinkage increased with increasing orientation, which might be minimized by the development of crystalline morphology of PTT in the course of cold drawing.

Reliability Estimation of Door Hinge for Rome Appliances (가전제품용 경첩의 신뢰성 추정)

  • Kim Jin Woo;Shin Jae Chul;Kim Myung Soo;Moon Ji Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.689-697
    • /
    • 2005
  • This paper presents the reliability estimation of door hinge for home appliances, which consists of bushing and shaft. The predominant failure mechanism of bushing made of polyoxymethylene(POM) is brittle fracture due to decrease of strength caused by voids existing, and that of shaft made of acrylonitrile-butadiene-styrene(ABS) is creep due to plastic deformation caused by excessive temperature and lowering of glass transition temperature by absorbed moisture. Since the brittle fracture of bushing is overstress failure mechanism, the load-strength interference model is used to estimate the failure rate of it along with failure analysis. By the way, the creep of shaft is wearout failure mechanism, and an accelerated life test is then planned and implemented to estimate its lifetime. Through the technical review about failure mechanism, temperature and humidity are selected as accelerating variables. Assuming Weibull lifetime distribution and Eyring model, the life-stress relationship and acceleration factor, $B_{10}$ life and its lower bound with $90\%$ confidence at worst case use condition are estimated by analyzing the accelerated life test data.

Radiation-Induced Graft Copolymerization of Methacrylic Acid and Methyl methacrylate onto Polyester.

  • Kang, Young-Kun;Chang, Hoon-Seun;Lee, Chong-Kwang;Park, Jae-Ho
    • Nuclear Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.195-201
    • /
    • 1978
  • The radiation-induced graft polymerization of methacrlic acid and methyl methacrylate onto a polyester fabric was investigated with ${\gamma}$-ray as the radiation source, and the rate of grafting was examined. When acrylic acid, methacrylic acid, and methyl methacrylate were grafted onto a polyester fabric, grafting efficiency was depened upon the dielectric constant of the solvent in the monomer mixture. The yield of the graft polymerization was related to the total dose, the concentration of the monomer, and the concentration of the swelling agent. The melting point and the glass transition temperature of MA and MMA grafted copolymers were analysed by means of DTA. Physical properties, such as the moisture regain, the antistatic property, and the wicking time were measured.

  • PDF

A Study on Frequency Dependence on Dielectric Properties of Silicone Rubber Sheets (실리콘 고무 시트의 유전특성에 미치는 주파수 의존성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.405-410
    • /
    • 2020
  • In this study, the following results were obtained by analysis of electric properties with FT-IR, DSC, XRD, and SEM, in the range of temperature 30~160℃ and frequency 0.1~200 kHz, when filling agent (0~100 phr) and silicone oil (0~12 phr) were added to raw silicone rubber. In the case of 100 phr mixed samples, the relative dielectric constant εr gradually decreased from 4.3 to 3.96 as frequency increased, and the dielectric loss tan δ decreased to 0.01 at 300 Hz, then increased to 0.022 at 30 kHz, then decreased to 200 kHz. The FT-IR analysis identified the same binding structure according to the chemical composition of added silica (SiO2). Through DSC analysis, we could determine the change of heat quantity and the glass transition temperature of each specimen. In the XRD analysis, it was found that the images SiO2, TiO2, and Fe2O3 appeared for specimens with 0%, 50% and 100% filling agent. Finally, the SEM analysis confirmed that particles of 0.5 to 1.5 ㎛ size with silica (SiO2) mixing were dispersed evenly.

Synthesis of [P(AA-co-PEGMM)] Copolymer Films and its Physicochemical Characteristics ([P(AA-co-PEGMM)] 공중합체 필름의 합성 및 물리화학적 특성)

  • Kim, Joun-Sik;Park, Jeong-Sook;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.3
    • /
    • pp.173-180
    • /
    • 2001
  • The physicochemical characteristics such as glass transition temperature (Tg), surface energy, swelling and FT-IR of [P(AA-co-PEGMM)], a copolymer of acrylic acid (AA) and polyethyleneglycol monoethylether mono methacrylate (PEGMM), were evaluated. The Tg of [P(AA-co-PEGMM)] decreased with increasing PEGMM content. [P(AA-co-PEGMM)] with 18 mole% PEGMM had the Tg of about $40^{\circ}C$, the similar physiological temperature of human. Moreover, [P(AA-co-PEGMM)] with lower PEGMM content had higher hydration and expected lower mucoadhesive strengths. To predict the mucoadhesiveness of [P(AA-co-PEGMM)] films, the contact angle of films were measured. With the increasing content of PEGMM of films, the contact angle was increased and the higher mucoadhesive forces was expected. ATR-FTIR studies revealed that the addition of the PEG moiety in AA increased the potential of hydrogen bonding for [P(AA-co-PEGMM)] as compared to cross linking polyacrylic acid (cr-PAA) because the oxygen in the repeat unit of PEG contributed in the formation of hydrogen bonding in the presence of mucin solution.

  • PDF

Effect of Vinylic Monomers on Toughness of Unsaturated Polyester (불포화 폴리에스테르 수지의 강인성에 비닐계 단량체가 미치는 효과)

  • 이동호;정용균;최관영;김호겸;민경은;서관호;임정철;전일련
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.375-384
    • /
    • 2001
  • We investigated the change of mechanical properties of UP using mixture of SM with VAc or MA that have low glass transition temperature when polymerized instead of SM only for diluents of UP. In case of using mixture of SM/MA, it was elucidated that the toughness of UP was more improved than using SM only. But in case of SM/VAc, it was observed that the content of mixture could not affect on toughness. It was concluded that these results are caused by the effect of each diluents mixtures on stress-relaxation due to phase separation and on decrease glass transition temperature of UP is quite different from each other.

  • PDF

Synthesis and Characterization of Reduced Graphene Oxide/Gelatin Composite Films (환원된 산화그래핀/젤라틴 복합필름의 합성과 분석)

  • Chen, Guangxin;Qiao, Congde;Xu, Jing;Yao, Jinshui
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.484-490
    • /
    • 2014
  • Reduced graphene oxide (RGO) was fabricated using gelatin as a reductant, and it could be stably dispersed in gelatin solution without aggregation. A series of RGO/gelatin composite films with various RGO contents were prepared by a solution-casting method. The structure and thermal properties of the RGO/gelatin composite films were characterized by UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). The addition of RGO enhances the degree of crosslinking of gelatin films and decreases the swelling ability of the gelatin films in water, indicating that RGO/gelatin composite films have a better wet stability than gelatin films. The glass transition temperature ($T_g$) of gelatin films is also increased with the incorporation of RGO. The presence of RGO slightly increases the degradation temperature of gelatin films due to the very low content of RGO in the composite films. Since gelatin is a natural and nontoxic biomacromolecule, the RGO/gelatin composite films are expected to have potential applications in the biomedical field.