Effect of Chemical Structure on the Properties of UV-cured Polyurethane Acrylates Films

  • Kwon, Ji-Yun (Department of Textile Engineering, College of Engineering, Pusan National University) ;
  • Yoo, Hye-Jin (Department of Textile Engineering, College of Engineering, Pusan National University) ;
  • Kim, Han-Do (Department of Textile Engineering, College of Engineering, Pusan National University)
  • Published : 2001.09.01

Abstract

The effect of compositions of isophorone diisocyanate (IPDl)/4.4'-diphenylmethane diisocyalate (MDI) and polypropylene oxide diol (PPG, $M_w$: 3000)/1,4-butane diol (BD) on the properties of UV-cured polyurethane acrylate films based on 2-hydroxyethyl acrylate (HEA) was examined. UV-curable polyurethane acrylates were formulated from the prepolymer. trimethylol propane triacrylate (TMPTA) as a reactive diluent, and 1-hydroxycyclohexyl ketone (Irgacure 184) as a photoinitiator. Dynamic mechanical thermal properties and elastic properties of UV-cured polyurethane acrylates was fecund to depend on the chemical composition of IPDl/MDl and PPG/BD. As the BD content increased, the tensile storage modulus of all series samples increased significantly. The storage modulus increased in the order of samples A (IPDI based samples)> samples B (IPDI/MDl (7/3 molar ratio) based samples) > samples C (IPDI/MDl (5/5 molar ratio) based samples at the same composition. Two distinct louts modulus peaks for all samples are observed owing to the softs segment glass transition temperature ($T_gh$) and hard segment glass transition temperature ($T_gh$). The difference between $T_gh$, and $T_gh$, (Δ$T_g$) increases in the order of A > B > C at the same composition. In cycle test, the initial onset strain (%) was found to decrease with increasing BD content in PPG/BD and with increasing MDI content in IPDI/MDl.

Keywords

References

  1. Eur. Polym. J. v.36 S.Oprea;S.Vlad;A.Stansiu
  2. J. Polym. Sci. v.37 P.Barbeau;J.F.Gerard;B.Magny;J.P.Pascault;G.Vigier
  3. J. Appl. Polym. Sci. v.62 S.Velankar;J.Pazos;S.L.Cooper
  4. J. Appl. Polym. Sci. v.42 Y.C.Lai;L.J.Baccei
  5. Thermochimica Acta v.326 F.Burel;L.Lecamp;B.Youssef;C.Bunel;J.M.Saiter
  6. Chem. Eng. Commun. v.30 S.B.Lin;S.Y.Tsay;T.A.Speckhard;K.K.S.Hwang;J.J.Jezerc;S.L.Cooper
  7. J. Mater. Sci. v.17 M.Koshiba;K.K.S.Hwang;S.K.Foley;D.J.Yarusso
  8. J. Appl. Polym. Sci. v.30 T.A.Speckhard;K.K.S.Hwang;S.B.Lin;S.Y.Tasy;M.Koshiba;Y.S.Ding;S.L.Cooper
  9. J. Appl. Polym. Sci. v.42 Y.C.Lai;L.Baccei
  10. J. Appl. Polym. Sci. v.42 H.B.Kim;S.G.Kang;C.S.Ha
  11. J. Appl. Polym. Sci. v.60 B.K.Kim;K.H.Kim
  12. J. Appl. Polym. Sci. v.60 B.Nabeth;J.F.Gerard;J.Pascault
  13. Polymer Degradation and Stability v.64 C.Decker;K.Zahouily
  14. J. Korean Fiber Soc. v.36 D.J.Lee;J.Y.Choi;H.D.Kim
  15. Eur. Polym. J. v.36 M.Debowski;A.Balas
  16. Szycher’s Handbook of Polyurethanes M.Szycher
  17. J. Appl. Polym. Sci. v.67 H.D.Kim;T.W.Kim
  18. Szycher’s Handbook of Polyurethanes no.Chap.11 M.Szycher
  19. J. Appl. Polym. Sci. v.69 H.D.Kim;J.H.Huh;E.Y.Kim;C.C.Park
  20. International Journal of Adhesion & Adhesives v.20 M.S.Sanchez-Adsuar
  21. Polymer v.41 T.L.Wang;F.J.Huang
  22. Thermochimica Acta v.357 C.G.Mothe;C.R.de Araujo
  23. J. Polym. Sci. v.38 Ph.Barbeau;J.F.Gerard;B.Magny;J.P.Pascault
  24. J. Polym. Sci. v.34 J.Chen;J.P.Pascault;M.Taha
  25. J. Appl. Polym. Sci. v.38 S.Nakazato;T.Amari;T.Yamaoka