• Title/Summary/Keyword: Glass Molding Press

Search Result 60, Processing Time 0.068 seconds

Form Error Compensation of Aspheric lens considering Thermal Deformation on Glass Molding Press ( I ) (Glass Lens 가압성형의 열 변형에 의한 비구면 Lens 형상보정 ( I ))

  • Lee, Hak-Suk;Lee, Dong-Kil;Park, Jong-Rak;Kim, Hye-Jung;Kim, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.354-354
    • /
    • 2008
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized is gradually increasing. Generally, the aspheric glass lens is manufactured by GMP(Grass Molding Press) method using WC(tungsten carbide) mold core. In this study, the thermal deformation which occurs in the cooling step of GMP was considered, and it was compensated the form of mold core. The lens which was molded by compensated mold core was satisfied that can be applied to the actual specifications.

  • PDF

A Study on the Molding Process of an Optical Communication Aspherical Glass Lens Using the Weight Molding Method (광통신용 비구면 글라스 렌즈 자중성형 공정 연구)

  • Ryu, Sang;Roh, Kyung Hwan;Choi, Kwang Hyeon;Kim, Won Guk;Lee, Won Kyung;Kim, Do Hee;Yang, Kuk Hyeon
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.427-432
    • /
    • 2018
  • In this study, the aspherical lens for optical communications produced not with an one-step pneumatic type of external pressurization system (existed GMP process) but a constant weight of self-loaded mold put up to upper core. So the lens is molding with self-loaded weight molding and it calls Weight Molding process. In self-loaded molding process, we measured changes of center thickness molding lenses with each variable molding temperatures and time to find the effect of center of lens thickness to search key factors. As experimental results, the center thickness reach to targeted lenses step time value was changed drastically and it depends by molding temperature. If the molding temperature gets higher, the targeted lens that is reaching to the center thickness step time value was decreased. To find the effect of life improvement on mold core by imposing the self-loaded molding process we molded with GMP(Glass molding press) method and self-loaded molding method for 9,000 times and measured the lenses shape accuracy and surface roughness to evaluate the core life. As a result the self-loaded molding method core has 2,000 times longer that GMP (Glass molding press) method. If we adopt self-loaded molding method of the optical aspherical lens molding in the future, we expect that it would reduce the expense of changing the molds by molding core life improvements.

Dependence of Annealing Condition on Aspheric Glass Lens Molding (비구면 Glass렌즈 성형에 미치는 서냉조건 의존성)

  • Cha, Du-Hwan;Ahn, Jun-Hyung;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.469-470
    • /
    • 2006
  • The purpose of this research was to investigate and to find out the optimal annealing condition to mold an aspheric glass to be used for mobile phone module having 2 megapixel and $2.5{\times}$ zoom. Taking annealing rate and re-press temperature after molding as molding variables under the identical molding temperature and pressure, a glass lens was molded. And, Form Accuracy, Lens Thickness, Refractive Index, and Modulation Transfer Function(MTF) were measured in order to observe characteristics of molded lens, and then optimal annealing conditions were determined based on the resulting data. Properties of lens molded under the optimal conditions revealed Form Accuracy[PV] $0.2047\;{\mu}m$ in aspheric surface, and $0.2229\;{\mu}m$ in plane, and MTF value was 30.3 % under 80 lp/mm.

  • PDF

Study on the Aspheric Glass Lens Forming Simulation in the Progressive GMP process (순차이송 GMP 공정에서의 비구면 유리렌즈 성형 해석에 관한 연구)

  • Chang, S.H.;Gang, J.J.;Shin, K.H.;Jung, W.C.;Heo, Y.M.;Jung, T.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.539-542
    • /
    • 2008
  • Recently, GMP(Glass Molding Press) process is mainly used to produce aspheric glass lenses. Because glass lens is heated at high temperature above Ty (yielding point) for forming glass, the quality of aspheric glass lens is deteriorated by residual stresses which are generated in a aspheric glass lens after forming. Before this study, as a fundamental study to develop forming conditions for progressive GMP process, compression, strain relaxation and thermal conductivity tests were carried out to obtain the visco-rigid plastic, the visco-elastic and thermal properties of K-PBK40 which is newly developed and applied for precision molding glass material, In this study, using the experimental results we obtained, a glass lens forming simulation in progressive GMP process was carried out and we could forecast the shape of deformed glass lenses and residual stresses contribution in the structure of deformed glass lenses after forming.

  • PDF

Effect of the Molding Conditions on Formability in Progressive Glass Molding Press (순차이송방식 GMP 공정에서 공정변수가 유리렌즈 성형성에 미치는 영향)

  • Jung, T.S.;Park, K.S.;Kim, D.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.633-639
    • /
    • 2009
  • Remarkable progress had been made in both technology and production of optical elements including aspheric lens. In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. Against such a background, the high-precision optical GMP process was developed with an eye on mass production of precision optical glass pasts by molding press. This GMP process can produce with precision and good repeatability special form lenses such as for cameras, video cameras, aspheric lenses for optical items. In this study, Design Of Experiment(Taguchi method) was adopted to find a tendency of molding conditions that influence formability. Three main factors for molding conditions were selected based on pressure at pressing stage and temperature, pressure at cooling stage. Also, the DOE was carried out and the interference patterns were measured to evaluate the formability of GMP process. From the results, it was found that the cooling pressure is the most sensitive parameter for progressive GMP process.

Experimental Study of the Aspheric-plano Lens Fabrication using Compression Glass Molding

  • Ryu, Seong-Mi;Kim, Hye-Jeong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.237-242
    • /
    • 2008
  • The effects of the process parameters in the molding of aspheric glass lenses for camera phone modules have been investigated experimentally. The molding conditions were optimized with respect to the form accuracy (PV) (the response variable) of the molded lens. The experimental conditions were obtained by employing a factorial design method. From the analysis of variance (ANOVA) and P-value (significance level), the slow cooling rate was found to affect the response variable most significantly. The lens molded under the optimum molding condition showed a transcription ratio of 93.4%.

Finite Element Analysis for Shape Prediction on Micro Lens Forming (마이크로 렌즈 성형시 형상예측을 위한 유한요소해석)

  • 전병희;홍석관;표창률
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.581-588
    • /
    • 2002
  • Among the processes to produce micro lens, the process using press molding is a new technology to simplify the process, but it contains many unknown variables. The press-molding process proposed in this paper was simplified into two step process, the first step is the pressing to design the preform for glass element, the second step is the annealing to reduce the residual stress. It is important to estimate the amount of shrinkage of glass gob and the residual stress during process. It Is difficult to evaluate the process variables as mentioned above through the experiment. The influences due to process variables was evaluated by using FEM parametric analysis. The results in this paper can be applicable to produce micro lens.