• 제목/요약/키워드: Glass Fiber Reinforced Epoxy Composite

검색결과 104건 처리시간 0.023초

유리섬유강화 나노 복합재료의 전자기파 차폐효과 비교 (Comparison of Electromagnetic-wave Shielding Effect in Glass Fiber Reinforced Nano Composites)

  • 정우균;원명식;안성훈
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.121-128
    • /
    • 2005
  • The research on electromagnetic shielding has been advanced for military applications as well as for commercial products. Utilizing the reflective properties and absorptive properties of shielding material, the replied signal measured at the rear surface or at the signal source can be minimized. The shielding effect was obtained from materials having special absorptive properties and structural characteristics such as stacking sequence. Recently researchers studied the electromagnetic properties of nano size particles. In this research {glass fiber}/{epoxy}/{nano particle} composites(GFR-Nano composites) was fabricated using various nano particles, and their properties in electromagnetic shielding were compared. For the visual observation of the nano composite materials, SEM(Scanning Electron Microscope) and TEM(Transmission Electron Microscope) were used. For the measurement of electromagnetic shielding, HP8719ES S-parameter Vector Network Analyser System was used on the frequency range of 8 GHz${\~}$12GHz. Among the nano particles, carbon black and Multi-Walled Carbon Nano-Tube (MWCNT) revealed outstanding electromagnetic shielding. Although silver nano particles (flake and powder) were expected to have effective electromagnetic shielding due to their excellent electric conductivities, test results showed little shielding characteristics.

에폭시 수지가 적용된 유리섬유 복합재료의 극저온 환경 기계적 특성 분석을 통한 LNG CCS 적용성 평가 (Applicability Assessment of Epoxy Resin Reinforced Glass Fiber Composites Through Mechanical Properties in Cryogenic Environment for LNG CCS)

  • 염동주;방승길;정연제;김희태;박성보;김용태;오훈규;이제명
    • 대한조선학회논문집
    • /
    • 제58권4호
    • /
    • pp.262-270
    • /
    • 2021
  • Consumption of Liquefied Natural Gas (LNG) has increased due to environmental pollution; therefore, the need for LNG carriers can efficiently transport large quantities of LNG, is increased. In various types of LNG Cargo Containment System (CCS), Membrane-type MARK-III composed of composite materials is generally employed in the construction of an LNG carrier. Among composite materials in a Mark-III system, glass-fiber composites act as a secondary barrier to prevent the inner hull structure from leakage of LNG when the primary barrier is damaged. Nevertheless, several cases of damage to the secondary barriers have been reported and if damage occurs, LNG can flow into the inner hull structure, causing a brittle fracture. To prevent those problems, this study conducted the applicability assessment of composite material manufactured by bonding glass-fiber and aluminum with epoxy resin and increasing layer from three-ply (triplex) to five-ply (pentaplex). Tensile tests were performed in five temperature points (25, -20, -70, -120, and -170℃) considering temperature gradient in CCS. Scanning Electron Microscopy (SEM) and Coefficient of Thermal Expansion (CTE) analyses were carried out to evaluate the microstructure and thermos-mechanical properties of the pentaplex. The results showed epoxy resin and increasing layer number contributed to improving the mechanical properties over the whole temperature range.

열처리가 유리섬유 강화 복합재료의 전기적 및 기계적 성질에 미치는 영향 (Effects of Heat Treatment on Electrical and Mechanical Properties of Glass Fiber Reinforced Epoxy)

  • 이백수;이덕출
    • 한국전기전자재료학회논문지
    • /
    • 제11권3호
    • /
    • pp.174-180
    • /
    • 1998
  • In this work, the properties of FRP, which is applied recently in the composite insulating materials, by thermal treatment were investigated. The specimens were epoxy glass laminates fabricated by thermal press method and had the volume content of 46[%] cutted $45^{\circ}C$ in the fiber direction and 1.0[mm] thickness. The experimental results showed that the amount of weight loss, wettability, surface potential, and surface resistivity increased up to 200[$^{\circ}C$] as a function of temperature. Usually, most degradations caused the hydrophilic to decrease the contact angle. But, in this work on thermal-degradated FRP, we can confirm the introduction of hydrophobic properties by cross-linking and the ablation of polar small-molecules rather than chain scission and oxidation. Finally, weight loss and contact angle increased. These phenomena show the existence of hydrophobic surface. With the change to the hydrophobic surface and the electrical potential and resistivity on FRP surface increased. But, the dielectric properties and tensile stength are decreased.

  • PDF

Hybrid Nanocomposites: Processing and Properties

  • Shi, Y.;Kanny, K.;Jawahar, P.
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.365-379
    • /
    • 2009
  • Epoxy/S2-glass reinforced composites (SGRPs) infused with Cloisite 30B nanoclays were manufactured using the vacuum assisted resin infusion molding (VARIM) process. Prior to infusion, the matrix and clays were thoroughly mixed using a direct mixing technique (DMT) and a high shear mixing technique (HSMT) to ensure uniform dispersion of the nanoclays. Structures with varying clay contents (1-3 wt%) were manufactured. Both pristine and SGRP nanocomposites were then subjected to mechanical testing. For the specimens manufactured by DMT, the tensile, flexural, and compressive modulus increased with increasing the clay content. Similarly, the tensile, flexural, compressive, interlaminate shear and impact strength increased with the addition of 1 wt% clay: however the trend reversed with further increase in the clay content. Specimens manufactured by HSMT showed superior properties compared to those of nanocomposites containing 1 wt% clay produced by DMT. In order to understand these phenomena a morphological study was conducted. Transmission electron microscopy (TEM) micrographs revealed that HSMT led to better dispersion and changed the nanoclay structure from orderly intercalation to disorderly intercalation giving multi-directional strength.

다중벽 나노튜브가 첨가된 유리 직물 복합재료의 미세구조 및 전자기적 물성 (Microstructure and Electromagnetic Property of MWNT-added Glass Fabric/Epoxy Composites)

  • 이상의;이원준;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.169-172
    • /
    • 2004
  • We fabricated MWNT-added glass fabric/epoxy composites. We observed the distribution of MWNTs in the composites using scanning electron microscopy and conformed that most of MWNTs exist in matrix rich region and interface between yams in warp and fill directions. We also investigated the change of permittivities with MWNT concentrations. Only $1wt\%$ MWNTs leads to high permittivity and electromagnetic waves are impossible to be transmitted to more than $3wt\%$ MWNT-added composites, which means the characteristics of these composites are comparable to those of metals or carbon fiber-reinforced composites.

  • PDF

Analysis of the machinability of GFRE composites in drilling processes

  • Khashaba, Usama. A.;Abd-Elwahed, Mohamed S.;Ahmed, Khaled I.;Najjar, Ismail;Melaibari, Ammar;Eltaher, Mohamed A
    • Steel and Composite Structures
    • /
    • 제36권4호
    • /
    • pp.417-426
    • /
    • 2020
  • Drilling processes in fiber-reinforced polymer composites are essential for the assembly and fabrication of composite structural parts. The economic impact of rejecting the drilled part is significant considering the associated loss when it reaches the assembly stage. Therefore, this article tends to illustrate the effect of cutting conditions (feed and speed), and laminate thickness on thrust force, torque, and delamination in drilling woven E-glass fiber reinforced epoxy (GFRE) composites. Four feeds (0.025, 0.05, 0.1, and 0.2 mm/r) and three speeds (400, 800, and 1600 RPM) are exploited to drill square specimens of 36.6×36.6 mm, by using CNC machine model "Deckel Maho DMG DMC 1035 V, ecoline". The composite laminates with thicknesses of 2.6 mm, 5.3 mm, and 7.7 mm are constructed respectively from 8, 16, and 24 glass fiber layers with a fiber volume fraction of about 40%. The drilled specimen is scanned using a high-resolution flatbed color scanner, then, the image is analyzed using CorelDraw software to evaluate the delamination factor. Multi-variable regression analysis is performed to present the significant coefficients and contribution of each variable on the thrust force and delamination. Results illustrate that the drilling parameters and laminate thickness have significant effects on thrust force, torque, and delamination factor.

저변형률시험법에 의한 섬유강화 복합재료의 응력부식균열에 관한 연구 (A Study on Stress Corrosion Cracking of Fiber Reinforced Composite by Slow Strain Rate Test)

  • 임재규;최태수
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3433-3440
    • /
    • 1996
  • This paper was investigation of the stres corrosion cracking(SCC) mechanism and the properties of corrosion fracture surface of glass fiber reinforced plastics(GFRP) produced by hand lay up(HLU) method in synthetic sea water. Test material is GFRP, that was used vinylester type epoxy acrylate resin and an unsaturated polyester as the matrix and the chopped strand mat(CSM) type E-glss fiber as the reinforcement. The slow strain rate test(SSRT) was performed on dry, wet and saturated wet specimens in sea water. Here the pH concentration of synthetic sea water was 8.2 and the strain rate is 1 x $10^{-6}$($sec^{-1}$) and test temperature ranges varied from $-60^{\circ}C$ to $80^{\circ}C$. It could be confirmed the fact that wet specimens tested at a particular test temperature ranges were appeared the eviences of SCC such as con-planar, mirror and hackle zone. Moreover, SCC of GFRP in sea water was characterised by falt fracture surfaces with only small amounts of fiber pull-out, in partial.

필라멘트 와인딩 복합재의 환경노화에 따른 기계적물성 평가 (Behaviors of Mechanical Properties of Filament-Winding-Laminated Composites due to Environmental Aging)

  • 최낙삼;윤영주;이상우;김덕재
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.31-35
    • /
    • 2006
  • Degradation characteristics of filament-winded composites due to accelerated environmental aging have been evaluated under high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP did high reduction by 25% under the influence of high temperature and water while CFRP showed little degradation. However for water-immersed $90^{\circ}$ composites both CFRP and GFRP showed high reduction in tensile strength. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites.

  • PDF

FRP Re-bar 보강 직사각형 단면 콘크리트 보의 구조적 거동 및 설계방법에 관한연구 (A Study on the Structural Behavior and Design Criteria of FRP Re-bar Reinforced Rectangular Concrete Beam)

  • 주형중;옥동민;박주경;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.276-279
    • /
    • 2005
  • FRP Composite materials are widely applicable in the construction industries as a load-bearing structural element or a reinforcing and/or repairing materials for the concrete. In this paper, we presented the flexural behavior of FRP Re-bar and steel reinforced concrete beams and only FRP re-bars reinforced concrete beams. FRP Re-bar manufactured by different fibers but the same vinylester resin. Also, surface of FRP Re-bars is coated garnet and glass fiber by epoxy to increase the adhesive to concrete. Experimental investigation pertaining to the load-deflection and load-strain characteristics of two classfied specimens is presented and the theoretical prediction is also conducted. In the investigation, the effects of FRP Re-bar reinforcement are estimated. The experimental results arc compared with theoretical predictions. Good agreements arc observed.

  • PDF

Damage characterization in fiber reinforced polymer via Digital Volume Correlation

  • Vrgoc, Ana;Tomicevic, Zvonimir;Smaniotto, Benjamin;Hild, Francois
    • Coupled systems mechanics
    • /
    • 제10권6호
    • /
    • pp.545-560
    • /
    • 2021
  • An in situ experiment imaged via X-ray computed tomography was performed on a continuous glass fiber mat reinforced epoxy resin composite. The investigated dogbone specimen was subjected to uniaxial cyclic tension. The reconstructed scans (i.e., gray level volumes) were registered via Digital Volume Correlation. The calculated maximum principal strain fields and correlation residual maps exhibited strain localization areas within the material bulk, thus indicating damage inception and growth toward the specimen surface. Strained bands and areas of elevated correlation residuals were mainly concentrated in the narrowest gauge section of the investigated specimen, as well as on the specimen ligament edges. Gray level residuals were laid over the corresponding mesostructure to highlight and characterize damage development within the material bulk.