• Title/Summary/Keyword: Ginsenosides

Search Result 998, Processing Time 0.026 seconds

Salting-out extraction of ginsenosides from the enzymatic hydrolysates of Panax quinquefolium based on ethanol/sodium carbonate system

  • Wei, Yingqin;Hou, Baojuan;Fang, Haiyan;Sun, Xinjie;Ma, Feng
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • Background: Salting-out extraction (SOE) had been developed as a special branch of aqueous two-phase system recently. So far as we know, few reports involved in extracting ginsenosides with SOE because of the lower recovery caused by the unique solubility and surface activity of ginsenosides. A new SOE method for rapid pretreatment of ginsenosides from the enzymatic hydrolysates of Panax quinquefolium was established in this article. Methods: The SOE system comprising ethanol and sodium carbonate was selected to extract ginsenosides from the enzymatic hydrolysates of Panax quinquefolium, and HPLC was applied to analyze the ginsenosides. Results: The optimized extraction conditions were as follows: the aqueous two-phase extraction system comprising ethanol, sodium carbonate, ethanol concentration of 41.51%, and the mass percent of sodium carbonate of 7.9% in the extraction system under the experimental condition. Extraction time had minor influence on extraction efficiency of ginsenosides. The results also showed that the extraction efficiencies of three ginsenosides were all more than 90.0% only in a single step. Conclusion: The proposed method had been successfully applied to determine ginsenosides in enzymatic hydrolysate and demonstrated as a powerful technique for separating and purifying ginsenosides in complex samples.

Correlation between the Content and Pharmacokinetics of Ginsenosides from Four Different Preparation of Panax Ginseng C.A. Meyer in Rats

  • Jeon, Ji-Hyeon;Lee, Jaehyeok;Lee, Chul Haeng;Choi, Min-Koo;Song, Im-Sook
    • Mass Spectrometry Letters
    • /
    • v.12 no.1
    • /
    • pp.16-20
    • /
    • 2021
  • We aimed to compare the content of ginsenosides and the pharmacokinetics after the oral administration of four different ginseng products at a dose of 1 g/kg in rats. The four different ginseng products were fresh ginseng extract, red ginseng extract, white ginseng extract, and saponin enriched white ginseng extract prepared from the radix of Panax ginseng C.A. Meyer. The ginsenoside concentrations in the ginseng product and the rat plasma samples were determined using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Eight or nine ginsenosides of the 15 tested ginsenosides were detected; however, the content and total ginsenosides varied depending on the preparation method. Moreover, the content of triglycosylated ginsenosides was higher than that of diglycosylated ginsenosides, and deglycosylated ginsenosides were not present in any preparation. After the single oral administrations of four different ginseng products in rats, only four ginsenosides, such as 20(S)-ginsenosides Rb1 (GRb1), GRb2, GRc, and GRd, were detected in the rat plasma samples among the 15 ginsenosides tested. The plasma concentrations of GRb1, GRb2, GRc, and GRd were different depends on the preparation method but pharmacokinetic features of the four ginseng products were similar. In conclusion, a good correlation between the area under the concentration curve and the content of GRb1, GRb2, and GRc, but not GRd, in the ginseng products was identified and it might be the result of their higher content and intestinal biotransformation of the ginseng product.

Effect of cAMP on the Differentiation of F9 Teratocarcinoma Stem Cells Induced by Ginsenosides (Ginsenosides에 의한 F9 기형암종세포의 분화유도 과정에서 cAMP의 작용)

  • 이열남;이호영
    • Journal of Ginseng Research
    • /
    • v.21 no.3
    • /
    • pp.141-146
    • /
    • 1997
  • The role of cAMP in the differentiation process of F9 cells induced by ginsenosides was examined by performing transient transfixion assay with CRE-luciferase reporter plasmid, GR thansactivation assay with GRE-luciferase activity with or without treatment of CAMP and forskolin, an activator of adenylate cyclase, and protein klnase A assay in the presence of ginsenosides. Ginsenosides had no effect on CRE-transactivation activity, whereas retinoic acid induced the activity. When cAMP or forskolin was treated with ginsenosides, GRE-luciferase activity was further augumented by them. In addition, ginsenosides induced protein kinase A activity in the presence of cAMP. These results suggest that ginsenosides activate cAMP-dependent protein kinase A which, in turn, increase GR activity in F9 cells.

  • PDF

The Change of Ginsenosides Composition from Decocted Ginseng with Citric Acid and Schisandrae Fructus (인삼 탕액 제조시 구연산과 오미자에 의한 진세노사이드 조성 변화)

  • Lee, Sang Myung
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.121-126
    • /
    • 2014
  • In order to observe the change of ginsenosides, two simplified decoctive conditions are set up aqueous citric acids (0, 12.5, 25, 50, 75, and 100 mM) with ginseng powder (3 g) and Schisandrae Fructus (0, 1, 2, 3 g) with ginseng powder (3 g). Decoctive temperature and duration are $95^{\circ}C$ and 1.5 h. The contents of major ginsenosides are decreased by increasing concentration of citric acid. But the contents of converted ginsenosides have not been a noticeable increase. In the decoctive condition with Schisandrae Fructus, the contents of major protopanaxdiol ginsenosides seriously decreases that compared with major protopanaxtriol ginsenosides. Therefore, Schisandrae Fructus provides the condition that predominantly converts protopanaxdiol ginsenosides in ginseng decoction.

Differential Transformation of Ginsenosides from Panax ginseng by Lactic Acid Bacteria

  • Chi, Hyun;Lee, Bo-Hyun;You, Hyun-Ju;Park, Myung-Soo;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1629-1633
    • /
    • 2006
  • Ginsenosides have been regarded as the principal components responsible for the pharmacological and biological activities of ginseng. The transformation of ginsenosides with live lactic acid bacteria transformed ginsenosides Rb2 and Rc into Rd, but the reactions were slow. When the crude enzymes obtained from several lactic acid bacteria were used for transformation, those from Bifidobacterium sp. Int57 exhibited the most potent transforming activity of ginsenosides to compound K. In comparison, a relatively higher level of Rh2 was produced by the enzymes from Lactobacillus delbrueckii and Leuconostoc mesenteroides. These results suggest that it is feasible to develop a specific bioconversion process to obtain specific ginsenosides using the appropriate combination of ginsenoside substrates and specific microbial enzymes.

Analysis of major ginsenosides in various ginseng samples

  • Lee, Dong Gu;Lee, Ju Sung;Kim, Kyung-Tack;Kim, Hyun Young;Lee, Sanghyun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.87-91
    • /
    • 2019
  • The contents of major ginsenosides (ginsenosides Rb1, ginsenoside Rc, ginsenoside Rd, ginsenoside Re, ginsenoside Rf, and ginsenoside Rg1) in ginseng cultivated in different areas in Korea, ginseng that underwent different cultivation processes and ages, and ginseng cultivated in different countries were determined using high-performance liquid chromatography equipped with UV/VIS detector. Ginsenoside Rc was the most abundant ginsenoside in all different ginseng samples. The highest total concentration of major ginsenosides was found in the ginseng cultivated in Jinan (0.931 mg/g) and 4-year grown red ginseng (1.785 mg/g). Major ginsenosides were the most abundant in Korean ginseng (1.264 mg/g), compared to those in Chinese and American ginseng. The results of this study showed the different contents of major ginsenosides in the ginseng samples tested and emphasized which sample could contain high yield of ginsenosides.

Morphine dependence is attenuated by red ginseng extract and ginsenosides Rh2, Rg3, and compound K

  • Yayeh, Taddesse;Yun, Kyunghwa;Jang, Soyong;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.445-452
    • /
    • 2016
  • Background: Red ginseng and ginsenosides have shown plethoric effects against various ailments. However, little is known regarding the effect of red ginseng on morphine-induced dependence and tolerance. We therefore investigated the effect of red ginseng extract (RGE) and biotransformed ginsenosides Rh2, Rg3, and compound K on morphine-induced dependence in mice and rats. Methods: While mice were pretreated with RGE and then morphine was injected intraperitoneally, rats were infused with ginsenosides and morphine intracranially for 7 days. Naloxone-induced morphine withdrawal syndrome was estimated and conditioned place preference test was performed for physical and psychological dependence, respectively. Western blotting was used to measure protein expressions. Results: Whereas RGE inhibited the number of naloxone-precipitated jumps and reduced conditioned place preference score, it restored the level of glutathione in mice. Likewise, ginsenosides Rh2, Rg3, and compound K attenuated morphine-dependent behavioral patterns such as teeth chattering, grooming, wet-dog shake, and escape behavior in rats. Moreover, activated N-methyl-D-aspartate acid receptor subunit 1 and extracellular signal-regulated kinase in the frontal cortex of rats, and cultured cortical neurons from mice were downregulated by ginsenosides Rh2, Rg3, and compound K despite their differential effects. Conclusion: RGE and biotransformed ginsenosides could be considered as potential therapeutic agents against morphine-induced dependence.

Ginsenosides Evoke Vasorelaxation in Rat Aortic Rings: Involvement of $Ca^{2+}$-dependent $K^+$ Channels

  • Nak Doo Kim;Soo
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.182-189
    • /
    • 1998
  • Administration of ginsenosides, a mixture of saponin extracted from Panax ginseng, decreased blood pressure in rat. Previous studies have shown that ginsenosides caused endothelium-dependent relaxation, which was associated with the formation of cyclic GMP, suggested that ginsenosides caused release of nitric oxide (NO) from the vascular endothelium. The aim of the present study was to characterize the endothelium-independent relaxation to ginsenosides in the isolated rat aorta. Ginsenosides caused a concentration-dependent relaxation of rat aortic rings without endothelium constricted with 25 mM KCI but affected only minimally those constricted with 60 mM KCI. Ginsenoside Rg3 (Rg3) was a more potent vasorelaxing agonist than total ginsenoside mixture and also the ginsenoside PPT and PPD groups. Relaxation to ginsenosides were markedly reduced by TEA, but not by glibenclamide. Rg3 significantly inhibited Cal'-induced concentration-contraction curves and the "50a2'influx in aortic rings incubated in 25 mM KCI whereas those responses were not affected in 60 mM KCI. Rg3 caused efflux of $"Rb in aortic rings that was inhibited by tetraethy- lammonium (TEA), an inhibitor of Ca"-dependent K'channels, but not by glibenclamide, an inhibitor of AfP-dependent K'channels. These findings indicate that ginsenosides may induce vasorelaxation via activation of Ca2'-dependent K'channels resulting in hyperpolarization of the vas- cular smooth muscle with subsequent inhibition of the opening of voltage-dependent Caf'channels. These effects could contribute to explain the red ginseng-associated vasodilation and the beneficial effect on the cardiovascular system.

  • PDF

Studies on the Absorption and Excretion of Ginsenosldes (인삼사포인의 흡수 및 배설에 관한 연구)

  • Han, Byeong-Hun;Park, Man-Gi;Lee, Eun-Sil
    • Journal of Ginseng Research
    • /
    • v.15 no.2
    • /
    • pp.112-116
    • /
    • 1991
  • The metabolic fate of ginsenosides including gastrointestinat absorption, organ distribution, excretion and metabolism in liver was investigated by tracer studies using the radio-labeled ginsenosides. 3H-ginsenosides were shown to be absorbed from the mouse digestive tract and then to be excreted rapidly into urine and/or bile. Bile juice was concluded to play a significant role in absorption of ginsenosides. The total concentration of radioactivity persisted in tissues 24 hrs after oral administration was less than 1.3% of the administered dose and Rbl showed the highest value. The concentrations of radioactivity were relatively high in the liver and kidney. After administration of Rbl radioactivity was detected in the brain. After oral administration of 8H-ginsenosides, major component excreted into urine was found to be the intact ginsenosides and decomposed and/or metabolized products were found in GIT in the case of Rbl. 3H-ginsenoside Rbl was shown to be metabolized in the liver and the metabolite was suggested to be an acylated compound of Rbl by a certain organic acid.

  • PDF

The Production of Ginsenosides from Ginseng Hairy Root by Treatment of the Chitin and Chitosan (Chitin과 Chitosan 처리에 의한 인삼모상근으로부터 Ginsenosides 생산)

  • 오승용;박효진;최경화;맹성주;양계진;양덕춘
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.68-73
    • /
    • 2000
  • To elucidate the effect of chitin and chitosan on the production of ginsenosides and growth, ginseng hairy root was cultured on the 1/2 MS medium supplemented with chitin and chitosan of various concentrations and culture period. The highest growth was obtained with 1 mg/L of chitin. However, the growth was inhibited by 20 mg/L or above. The contents and productivity of ginsenosides were the highest when ginseng hairy roots were cultured on 40 mg/L chitin and applied of the third-weeks of culture period. Ginseng hairy root culture with 1 mg/L of chitosan resulted in the best growth, but the highest ginsenosides level was appeared in 30 mg/L chitosan. Ginsenosides content was increased when it was treated at the forth-week after culture as 30 mg/L of chitosan.

  • PDF