• 제목/요약/키워드: Ginsenoside contents

검색결과 315건 처리시간 0.034초

인삼 모상근의 캘러스를 이용한 ginsenoside 생산 (Production of Ginsenoside in Callus of Ginseng Hairy Roots)

  • 권정희;천현준;양덕조
    • Journal of Ginseng Research
    • /
    • 제27권2호
    • /
    • pp.78-85
    • /
    • 2003
  • Agrobacterium rhizognes $A_4$ Ti-plasmid를 인삼 뿌리에 도입하여 유전적으로 안정하며 반영구적으로 이용할 수 있는 형질전환된 인삼모상근 캘러스(GHC-T78)를 유도하였다. 특정 ginsenoside를 대량으로 생산할 수 있는 최적배양조건을 확립하기 위해서 먼저 모상근으로부터 캘러스의 유도하는 과정에서 BA의 단독 처리구는 auxin과 cytokinin의 혼합 처리구보다 캘러스 형성이 더 우수하였다. 인삼 캘러스 형성율은 Benzyladenine(BA)를 1 mg-3 mg/L 까지 첨가한 배지에서 가장 높게 나타났으며, ginsenoside 함량 역시 bezyladenine 단독처리구는 가장 우수하였다. 캘러스 세포의 액체배양 기간을 4주로 설정할 때 BA의 농도 역시 BA 2 mg/L로 첨가한 배지에서 가장 우수한 캘러스 생장률을 보였다. 실제로 인삼 모상근 캘러스의 생장율은 암상태에서 배양하는 것이 광상태에서 보다 다소 양호하였으나, ginsenoside의 생성에는 연속광상태에서 더 효과적임이 확인되었다. 모상근 캘러스에서 얻은 이러한 결과는 국내외 처음으로 보고되는 내용이며, 액체배양의 캘러스 세포에서 분화된 무수히 많은 단일 모상근 근모의 형성은 액체배양을 통한 특정 ginsenosid의 새로운 생산방법을 개발할 수 있도록 하고 있다.

The Effective Preparation of Protopanaxadiol Saponin Enriched Fraction from Ginseng using the Ultrafiltration

  • Seol, Su Yeon;Kim, Bo Ram;Hong, Se Chul;Yoo, Ji Hyun;Lee, Kun Hee;Lee, Ho Joo;Park, Jong Dae;Pyo, Mi Kyung
    • Natural Product Sciences
    • /
    • 제20권1호
    • /
    • pp.58-64
    • /
    • 2014
  • In this study, edible protopanaxadiol saponin enriched fraction were prepared by ultrafiltration (UF). Ginseng extract was prepared from mixtures of ginseng main root and rootlet (root: rootlet = 4 : 6). UF system was used the four-piston Diaphragm pump equipped with 5 kDa pore size Hydrosart Cassette made by regenerated cellulose acetate (CA) or 3 kDa pore size Hollow Fiber cartridge made by polyethersulfone (PES). Total ginsenoside contents of concentrated fraction by UF system was found to higher, compared to before those of untreated method. Especially, processing of UF showed the increase of PPD-type ginsenoside, while PPT-type ginsenoside was gradually decreased by both 3 kDa and 5 kDa membrane. After removal of 80% water by the 5 kDa Hydrosart Cassette and by 3 kDa Hollow Fiber cartridge, ginsenoside Rb1 content was higher 37.2 mg/g and 25.3 mg/g than 20.8 mg/g in untreated process. The ratio of Rb1 to Rg1 (Rb1/Rg1) and PPD- to PPT- type ginsenoside (PPD/PPT) were higher in inner fluid of ginseng extract after UF by 3 kDa cartridge (47.1 and 23.5, respectively) and 5 kDa Cassette (25.3 and 11.9, respectively) than those of before UF (5.7 and 3.7, respectively). PPD-type ginsenoside enriched fraction by UF system could be developed as a new ginseng material in food and cosmetic industrials.

고려인삼의 부위별 Malonyl Ginsenoside 함량 비교 분석 (Comparison of Malonyl Ginsenoside Contents in Parts of Korean Ginseng)

  • 박영식;오명환;이환;정종태;조윤호;표미경
    • 생약학회지
    • /
    • 제48권1호
    • /
    • pp.82-87
    • /
    • 2017
  • Malonyl ginsenoside content of the Panax ginseng C.A. Meyer is known to account for 35% to 60% of total ginsenosides content. However, its distribution by ginseng part has not been studied. In this study, four kinds of malonyl ginsenosides were compared in Korean white ginseng part using the purified malonyl ginsenoside standards in our laboratory. White ginseng was prepared by the freeze drying ($-70^{\circ}C$, 48 h) or air drying ($50^{\circ}C$, 48 h) methods form 4-year-old ginseng. Malonyl ginsenoside content of main, lateral, and fine root, and of the main root without skin and its skin was compared. Malonyl ginsenosides (m-Rb1, m-Rb2, m-Rc and m-Rd) content (58%, 19.17 mg/g) in total ginsenosides of air dried white ginseng was decreased about 4% compared to its content of freeze dried white ginseng (62%, 20.40 mg/g). Malonyl ginsenoside content was the highest in fine root, compared to the main or lateral root. Malonyl ginsenosides content in skin of main root was 20.08 mg/g, while its content of the main root without skin was 2.58 mg/g. These results are expected to help establishment of quality specification and processing process in Korean white ginseng.

Bioavailability of Fermented Korean Red Ginseng

  • Lee, Hyun-Jung;Jung, Eun-Young;Lee, Hyun-Sun;Kim, Bong-Gwan;Kim, Jeong-Hoon;Yoon, Taek-Joon;Oh, Sung-Hoon;Suh, Hyung-Joo
    • Preventive Nutrition and Food Science
    • /
    • 제14권3호
    • /
    • pp.201-207
    • /
    • 2009
  • In an effort to improve ginsenoside bioavailability, the ginsenosides of fermented red ginseng were examined with respect to bioavailability and physiological activity. The results showed that the fermented red ginseng (FRG) had a high level of ginsenoside metabolites. The total ginsenoside contents in non-fermented red ginseng (NFRG) and FRG were 35715.2 ${\mu}g$/mL and 34822.9 ${\mu}g$/mL, respectively. However, RFG had a higher content (14914.3 ${\mu}g$/mL) of ginsenoside metabolites (Rg3, Rg5, Rk1, CK, Rh1, F2, and Rg2) compared to NFRG (5697.9 ${\mu}g$/mL). The skin permeability of RFG was higher than that of NFRG using Franz diffusion cells. Particularly, after 5 hr, the skin permeability of RFG was significantly (p<0.05) higher than that of NFRG. Using everted instestinal sacs of rats, RFG showed a high transport level (10.3 mg of polyphenols/g sac) compared to NFRG (6.67 of mg of polyphenols/g sac) after 1 hr. After oral administration of NFRG and FRG to rats, serum concentrations were determined by HPLC. Peak concentrations of Rk1, Rh1, Rc, and Rg5 were approximately 1.64, 2.35, 1.13, and 1.25-fold higher, respectively, for FRG than for NFRG. Furthermore, Rk1, Rh1, and Rg5 increased more rapidly in the blood by the oral administration of FRG versus NFRG. FRG had dramatically improved bioavailability compared to NFRG as indicated by skin permeation, intestinal permeability, and ginsenoside levels in the blood. The significantly greater bioavailability of FRG may have been due to the transformation of its ginsenosides by fermentation to more easily absorbable forms (ginsenoside metabolites).

60Co γ 를 조사한 인삼모상근 돌연변이 세포주의 생장과 Ginsenoside의 생산 (Production of Ginsenoside in the Hairy Roots Irradiated by 60Co γ on Panax ginseng C.A Meyer)

  • 최규명;권정희;반성희;양덕조
    • Journal of Ginseng Research
    • /
    • 제26권4호
    • /
    • pp.219-225
    • /
    • 2002
  • 본 연구는 인삼(Panax ginseng C. A. Meyer)의 모상근에 $^{60}$Co ${\gamma}$-ray의 조사에 따른 영향을 구명하고자 수행되었다. 0.5~4 Krad의 다양한 방사선을 조사한 결과 모상근은 3Krad이상에서 생장이 억제되었다. 2 Krad이하의 방사선을 조사한 모상근의 정단을 제거한후 자라난 측근을 하나의 세포주로 하여 생장과 형태가 다양한 206개의 모상근 세포주를 선발하고 1/2 MS 호르몬 무첨가 배지에서 배양하였다. 206개의 세포주 중 생장이 우수한 10개의 세포주를 선발하였는데 특히 대조구에 비해 ${\gamma}$-GHR 70과 ${\gamma}$-GHR 94의 생장이 각각 34.5%, 44.7% 으로 가장 높음을 확인하였다. 생장이 우수한 10개 세포주의 형태적 특징을 주근의 굵기와 측근의 돌기형성, 측근의 생장정도에 따라 관찰하였던 바, 생장이 우수한 세포주는 1차근이 가늘며 왕성한 생장을 나타남을 확인하였다. Ginsenoside의 함량에 있어서 생장이 우수한 10개의 세포주 중 8개의 모상근 세포주가 대조구보다 함량이 높았으며 특히 ${\gamma}$-GHR 59와 ${\gamma}$-GHR 94는 각각 19%와 16.9%로 가장 높은 함량을 나타내었다. 따라서 ${\gamma}$-ray를 조사한 모상근 세포주 중 총 ginsenoside 함량이 우수하고 생장 또한 우수한 세포주로 ${\gamma}$-GHR 70, ${\gamma}$-GHR 94를 선발하였다. 특정 ginsenoside의 함량별로 보면 항암에 효과적인 Rb$_2$${\gamma}$-GHR 57가 7.6%, Rc는 ${\gamma}$-GHR 69가 16.2%의 함량 증가를 나타내어 특정 ginsenoside 생산에 효율적일 것으로 보인다. 돌연변이와 관련된 유전자(VNTRP)분석은 현재 진행 중에 있다.

Ginsenoside Changes in Red Ginseng Manufactured by Acid Impregnation Treatment

  • Kim, Mi-Hyun;Hong, Hee-Do;Kim, Young-Chan;Rhee, Young-Kyoung;Kim, Kyung-Tack;Rho, Jeong-Hae
    • Journal of Ginseng Research
    • /
    • 제34권2호
    • /
    • pp.93-97
    • /
    • 2010
  • To enhance the functionalities of ginseng, an acid impregnation pre-treatment was applied during red ginseng processing. Acetic, ascorbic, citric, malic, lactic, and oxalic acid were used for the acid impregnation treatment, and total and crude saponin concentrations and ginsenoside patterns were evaluated. Total and crude saponin contents of red ginseng pre-treated by acetic, ascorbic, and citric acid were similar to those of red ginseng without pre-treatment, whereas lactic, malic, and oxalic acid pre-treatment caused a reduction of total and crude saponin in red ginseng. From the high performance liquid chromatography analysis of ginsenosides, increased $Rg_3$ density was shown in red ginseng pre-treated by acetic, ascorbic, and citric acid impregnation. In the case of lactic, malic, and oxalic acid pre-treatment, increased $Rg_1$ density was observed in red ginseng. Increased $Rg_1$ and $Rg_3$ contents due to acid impregnation during red ginseng processing may contribute to improving bioactive functionalities of red ginseng.

Enzymatic transformation of ginsenosides in Korean Red Ginseng (Panax ginseng Meyer) extract prepared by Spezyme and Optidex

  • Choi, Hyeon-Son;Kim, Sun Young;Park, Yooheon;Jung, Eun Young;Suh, Hyung Joo
    • Journal of Ginseng Research
    • /
    • 제38권4호
    • /
    • pp.264-269
    • /
    • 2014
  • Background: In this study, we examined the effects of various enzymes on chemical conversions of ginsenosides in ginseng extract prepared by amylases. Methods: Rapidase, Econase CE, Viscozyme, Ultraflo L, and Cytolase PCL5 were used for secondary enzymatic hydrolysis after amylase treatment of ginseng extract, and ginsenoside contents, skin permeability, and chemical compositions including total sugar, acidic polysaccharide, and polyphenols were determined on the hydrolyzed ginseng extract. Results: Rapidase treatment significantly elevated total ginsenoside contents compared with the control (p < 0.05). In particular, deglycosylated ginsenosides including Rg3, which are known as bioactive compounds, were significantly increased after Rapidase treatment (p < 0.05). The Rapidase-treated group also increased the skin permeability of polyphenols compared with the control, showing the highest level of total sugar content among the enzyme treatment groups. Conclusion: This result showed that Rapidase induced the conversion of ginsenoside glycosides to aglycones. Meanwhile, Cytolase PCL5 and Econase treatments led to a significant increase of uronic acid (acidic polysaccharide) level. Taken together, our data showed that the treatments of enzymes including Rapidase are useful for the conversion and increase of ginsenosides in ginseng extracts or products.

The effect of extrusion conditions on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng

  • Gui, Ying;Ryu, Gi Hyung
    • Journal of Ginseng Research
    • /
    • 제37권2호
    • /
    • pp.219-226
    • /
    • 2013
  • This study was conducted to investigate the effect of extrusion conditions (moisture content 20% and 30%, screw speed 200 and 250 rpm, barrel temperature $115^{\circ}C$ and $130^{\circ}C$) on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng (KRG). Extruded KRGs showed relatively higher amounts of acidic polysaccharide (6.80% to 9.34%) than non-extruded KRG (4.34%). Increased barrel temperature and screw speed significantly increased the content of acidic polysaccharide. The major ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg2s, Rg3s, Rh1, and Rg3r) of KRG increased through extrusion, while the ginsenoside (Rg1) decreased. The EX8 (moisture 30%, screw speed 250 rpm, and temperature $130^{\circ}C$) had more total phenolics and had a better scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals than those of extruded KRG samples. The extrusion cooking showed a significant increase (6.8% to 20.9%) in reducing power. Increased barrel temperature significantly increased the values of reducing power, the highest value was 1.152 obtained from EX4 (feed moisture 20%, screw speed 250 rpm, and temperature $130^{\circ}C$). These results suggest that extrusion conditions can be optimized to retain the health promoting compounds in KRG products.

Effect of Hot Water Boiling and Autoclaving on Physicochemical Properties of American Ginseng (Panax quinquefolium L.)

  • Kim, Kyung-Tack;Yoo, Kyung-Mi
    • Journal of Ginseng Research
    • /
    • 제33권1호
    • /
    • pp.40-47
    • /
    • 2009
  • This study evaluates changes in the chemical composition and bioactivities of American ginseng (Panax quinquefolius L.) processed by boiling in water, $75^{\circ}C$ for 10, 20, 30, and 40 min, and autoclaving at high temperatures, $115^{\circ}C$ for 30 and 60 min and $130^{\circ}C$ for 90 and 120 min. Total ginsenoside contents of boiled ginseng remained relatively unchanged, whereas the contents of autoclaved ginseng samples significantly decreased with an increase of both time and temperature. Compared to unheated ginseng (control), the color of both boiled and autoclaved ginseng decreased in lightness and increased in redness. The acidic polysaccharide contents, the total phenolic contents and the antioxidant capacity of boiled and autoclaved ginseng were higher than the untreated ginseng, with the highest values being exhibited by the autoclaved samples. In particular, the antioxidant capacity of unheated ginseng increased about 2.5 times ($285.7{\pm}14.03\;mg$/100g to $777.2{\pm}26.4\;mg$/100g) when ginseng was autoclaved at $130^{\circ}C$ for 120 min as compared to the control. It was concluded that as American ginseng was processed at a high temperature, especially steam-heated in an autoclave, its chemical constituents changed and, in particular, acidic polysaccharides, total phenolics and antioxidant capacity were considerably increased.