• Title/Summary/Keyword: Ginsenoside contents

Search Result 314, Processing Time 0.028 seconds

Production of Adventitious Ginseng Roots Using Biorectors

  • Yu, Kee-Won;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.309-315
    • /
    • 2000
  • Panax ginseng is an important medicinal plant that has been used worldwide for geriatric, tonic, stomachic, and aphrodisiac treatments. Ginsenosides contained in the ginseng root are the main substances having active functions for human body. The price of ginseng is very expensive due to a complex process of cultivation, and the yield of ginseng is limited, which cannot meet the demand of the increasing market. Researchers have applied plant biotechnology to solve the problems but there are still things to be determined towards ginsenoside production by large-scale adventitious root culture. In this experiment, 5 to 20 liter bioreactors were employed to determine optimal conditions for adventitious root culture and ginsenoside production of Panax gineng. Callus was induced from the ginseng root on MS agar medium containing 1.0 mg. $L^{-1}$ 2,4-D and 0.1 mg. $L^{-1}$ kinetin. Then the callus was cultured on MS agar medium supplemented with 2.0 mg. $L^{-1}$ IBA, 0.1 mg. $L^{-1}$ kinetin, and 30 g. $L^{-1}$ to induce adventitious roots. The maximum root growth and ginsenoside production were obtained in 1/2 MS medium. 2.0 mg. $L^{-1}$ naphthalene acetic acid resulted in greater root growth than 2.0 mg $L^{-1}$ indole-3-butyric acid. Ginsenoside content increased with 2.0 mg. $L^{-1}$ benzyl adenin or kinetin. High concentrations of benzyl adenin (above 3.0 mg. $L^{-1}$ ) decreased the adventitious root growth and ginsenoside productivity. N $H_{4}$$^{+}$ inhibited the ginsenoside accumulation, while high concentrations of $K^{+}$, $Mg_{2}$$^{+}$, and $Ca_{2}$$^{+}$ increased it. N $H_{4}$$^{+}$ at 0.5 and 1.0 times of the normal amount in 3/4 SH medium resulted in the greatest biomass increase, but the highest ginsenoside productivity was obtained when N $O_{3}$$^{-}$ was used as the sole nitrogen source in the medium. Most microelements at high concentrations in the medium inhibited the root growth, but high concentrations of MnS $O_4$enhanced the root growth. Root dry weight increased with increasing sucrose concentrations up to 50 g. $L^{-1}$ , but decreased from 70 g $L^{-1}$ Ginsenoside productivity was maximized at the range of 20 to 30 g. $L^{-1}$ sucrose. In the experiment on bioreactor types, cone and balloon types were determined to be favorable for both adventitious root growth and ginsenoside production. Jasmonic acid was effective for increasing ginsenoside contents and Rb group ginsenosides mainly increased. These results could be employed in commercial scale bioreactor cultures of Panax ginseng.x ginseng.

  • PDF

Content Comparison of Proximate Compositions, Various Solvent Extracts and Saponins in Root, Leaf and Stem of Panax Ginseng (인삼의 근, 엽 및 경의 일반성분, 용매별 엑기스 및 사포닌 함량 비교)

  • 김석창;최강주
    • Journal of Ginseng Research
    • /
    • v.11 no.2
    • /
    • pp.118-122
    • /
    • 1987
  • This study was carried out to investigate the effective components, especially saponins, in aerial parts of Panax ginseng. The contents of methanol and ethanol extracts in ginseng leaf were 35.9% and 27.3%, much higher than 15.4% and 8.37% in ginseng root and 21.7% and 16.3% in ginseng stem. And ginseng stem showed as high content of crude fiber as 39.2% which is very high compared with other two parts of ginseng. The contents of total crude saponin were 4.78%, 2.38% and 19.58% in ginseng root, stem and leaf, respectively. In ginseng leaf seven root ginseno-sides-ginsenoside-Rgl(3.32%), -Re(3.24%), -Rd(2.32 %), -Rc(0.65%), -Rb2(0.92%), -Rbl(0.29%), and -Rf(0.11%)-were analyzed by HPLC, Seven gisneno- sides-ginsenoside-Rgl(0.28%), -Re(0.3%), -Rd(0.05%), -Rf(0.01%), -Rc(trace), -Rb2(trace) and -Rbl(trace)-were detected in ginseng stem. Ginseng leaf contained high percentage of saponin and especially of ginsenoside-Rgl, -Re and -Rd. Therefore, ginseng leaf was good resources for ginsenoside-Rgl, -Re and -Rd.

  • PDF

Changes of composition during storage of Ginseng drink product (인삼드링크제품의 저장중 성분변화)

  • Joo, Hyun-Kyu;Jung, Dong-Kon;Kim, Nam-Dae
    • Applied Biological Chemistry
    • /
    • v.34 no.4
    • /
    • pp.339-343
    • /
    • 1991
  • The objective of this study was to evalute changes of $CO_2$ pressure, pH, precipitation, brix, free sugar, colority, crude saponin and ginsenoside contents of Ginseng Drink Product for ten months at different temperatures $(room\;temp.,\;35^{\circ}C$ and $50^{\circ}C)$. The results are as follows : $CO_2$ pressure was decreased after nine month storage at room temp., six months at $35^{\circ}C$ and three months at $50^{\circ}C$. pH and brix nearly constant at various storage temperatures and periods. Precipitation was appeared after five months storage at room temp., two months at $35^{\circ}C$ and one month at $50^{\circ}C$. Sucrose content was decrease, while glucose and fructose contents were increased at high temperature and long period of stroage. Colority and panaxatrial(PT) saponin contents were increased, while panaxadiol(PD) saponin was increased at high temperature and long period of stroage.

  • PDF

Thermal Conversion Pathways of Ginsenosides in Red Ginseng Processing

  • Lee, Sang Myung
    • Natural Product Sciences
    • /
    • v.20 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • According to the results of my study on the chromatographic analysis of fresh ginseng (Panax ginseng C. A. Meyer) roots, most of the contents of protopanxadiol ginsenosides $Rb_1$, Rc, $Rb_2$, and Rd are derived from the corresponding malonyl ginsenosides in fresh ginseng by a heat process. Also, I confirmed that acetyl ginsenosides are naturally occurring constituents in fresh ginseng, not decarboxylates from malonyl ginsenosides. Seven neutral ginsenosides $Rg_1$, Re, Rf, Rc, $Rb_1$, $Rb_2$, and Rd were transformed to specific conversions in red ginseng preparation conditions. The conversion paths progress by three rules concluded from my study. These conversion rules are I: the ether bond is stable at positions 3 and 6 in the dammarane skeleton, II: the ether bond between sugars is stable in glycosides, and III: the ether bond to glycosides is unstable at position 20 in the dammarane skeleton.

Studies on the Safety Assessment of Red-ginseng Radix Extract Solution for Herb-acupuncture (약침용 홍삼추출액의 급성독성시험에 관한 연구)

  • Nam, Yun-Seok;Lee, Yun-Ho
    • The Journal of Korean Medicine
    • /
    • v.17 no.1 s.31
    • /
    • pp.478-493
    • /
    • 1996
  • The components of Red-ginseng radix extract solution for herb- acupuncture were analyzed by HPLC. According to the Medical Product Safety Administration Guidelines for safety assessment, mice and rats were used for acute toxicity test. The results were summarized as follows; 1. In the Saponin contents(%) of Red-ginseng radix extract, Ginsenoside $Rb_1$ Saponin was 0.27% in raw material, 1.67% in extract powder and Ginsenoside Rc Saponin was 0.16% in raw material, 1.12% in extract powder and Ginsenoside Rd Saponin was 0.08% in raw material, 0.54% in extract powder. 2. There were no abnormal findings in acute toxicity test treated with Red-ginseng radix extract solution for herb-acupuncture and $LD_{50}$ could not be measured.

  • PDF

Change of Ginsenoside Rg3 and Acetylcholinesterase Inhibition of Black Ginseng Manufactured by Grape Juice Soaking (포도주스 침지 제조 흑삼의 Ginsenoside Rg3 함량 변화와 Acetylcholinesterase 억제효과)

  • Lee, Mi-Ra;Yun, Beom-Sik;Sun, Bai-Shen;Liu, Lei;Zhang, Dong-Liang;Wang, Chun-Yan;Wang, Zhen;Ly, Sun-Young;Mo, Eun-Kyung;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.349-354
    • /
    • 2009
  • This study was conducted to develop a new method for enhancing ginsenoside $Rg_3$, which is abundant in black ginseng. The cognition-enhancing effect of black ginseng extract was investigated via the assay of acetylcholinesterase (AChE) activity. Black ginseng I was prepared through the traditional method (by steaming and drying nine times repetitions). Black ginseng II, on the other hand, was prepared by steaming the ginseng three times at $120^{\circ}C$ for 30 min after soaking it in grape juice for 24 h. The ginsenosides of white, red, and black ginseng I, and II were investigated using the HPLC method, respectively. In black ginseng II, the ginsenoside $Rg_3$ contents, which cannot be found in white ginseng, amounted to 10.91 mg/g, approximately 18 times more than that in red ginseng. In the in-vivo study, black ginseng extract (200 mg/kg, p.o.) inhibited the AChE activity after 24 h by a single administration in the brain. Thus, the new manufacturing method for black ginseng was found to more effective in the conversion of ginsenoside $Rg_3$ compared to the traditional method. Black ginseng may also have the effect of preventing the cognitive impairment induced by cholinergic dysfunction.

Ginsenoside Compositions and Antioxidant Activity of Cultured and Mountain Ginseng (장뇌삼과 재배삼의 ginsenoside 함량과 항산화활성 추정)

  • Joung, Eun-Mi;Hwang, In-Guk;Lee, Min-Kyeng;Cho, Seong-Koo;Chung, Bong-Hwan;Jo, Suk-Ja;Lee, Sang-Hwa;Lee, Jun-soo;Jeong, Heon-Sang
    • Journal of agriculture & life science
    • /
    • v.44 no.3
    • /
    • pp.61-67
    • /
    • 2010
  • This study was conducted to investigate the antioxidant activities and ginsenoside compositions of 4-year-old cultured ginseng roots (4CGR), 4-year-old mountain ginseng roots (4MGR) and leaves (4MGL), and 8-year-old mountain ginseng roots (MGR) and leaves (8MGL). Ginseng root and leaves were extracted with water and 80% ethanol. Crude saponin content of 4CGR was 3.85% (d.b.) and the contents of 4MGR, 4MGL, 8MGR and 8MGL were 6.75, 8.57, 6.53 and 7.54% (d.b.), respectively. 4CGR showed the highest content of ginsenoside-$Rh_1$ (6.07 mg/g), 4MGR showed the highest content of ginsenoside-$Rb_1$ (11.63 mg/g), 4MGL showed the highest content of ginsenoside-Re (24.35 mg/g), 8MGR showed the highest content of ginsenoside-$Rh_1$ (19.77 mg/g), and 8MGL showed the highest content of ginsenoside-Re (20.43 mg/g). Total antioxidant activity (AEAC) was ranged from 5.56 at 4MGR to 20.67 mg AA eq/g at 8MGL.

Quantitative aspects of the hydrolysis of ginseng saponins: Application in HPLC-MS analysis of herbal products

  • Abashev, Mikhail;Stekolshchikova, Elena;Stavrianidi, Andrey
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.246-253
    • /
    • 2021
  • Background: Ginseng is one of the most valuable herbal supplements. It is challenging to perform quality control of ginseng products due to the diversity of bioactive saponins in their composition. Acid or alkaline hydrolysis is often used for the structural elucidation of these saponins and sugars in their side chains. Complete transformation of the original ginsenosides into their aglycones during the hydrolysis is one of the ways to determine a total saponin group content. The main hurdle of this approach is the formation of various by-products that was reported by many authors. Methods: Separate HPLC assessment of the total protopanaxadiol, protopanaxatriol and ocotillol ginsenoside contents is a viable alternative to the determination of characteristic biomarkers of these saponin groups, such as ginsenoside Rf and pseudoginsenoside F11, which are commonly used for authentication of P. ginseng Meyer and P. quinquefolius L. samples respectively. Moreover, total ginsenoside content is an ideal aggregated parameter for standardization and quality control of ginseng-based medicines, because it can be directly applied for saponin dosage calculation. Results: Different hydrolysis conditions were tested to develop accurate quantification method for the elucidation of total ginsenoside contents in herbal products. Linearity, limits of quantification, limits of detection, accuracy and precision were evaluated for the developed HPLC-MS method. Conclusion: Alkaline hydrolysis results in fewer by-products than sugar elimination in acidic conditions. An equimolar response, as a key parameter for quantification, was established for several major ginsenosides. The developed approach has shown acceptable results in the analysis of several different herbal products.

Changes of Berry Characteristics and Ginsenoside Content Depending on Collection Time of Korean Ginseng Berry (고려인삼 열매채취시기에 따른 열매형질 및 진세노사이드 함량 변화)

  • Yi, Eun Seob;Kim, Yeon Ju;An, Young Nam;Han, Jeong A;Cho, Chang Hui
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.3
    • /
    • pp.214-219
    • /
    • 2018
  • Background: This study was carried out to determine the best time for collecting ginseng berries without reducing the ginsenoside-Re content of ginseng roots, which are used as food, medicine, or cosmetic materials. Methods and Results: The test variety of ginseng used in this study was is Chunpung, which was collected from a 4-year-old ginseng field. Ginseng berries were collected at 7, 14, 21, 28, 35, 42, 49, and 56 days after flowering. The number of berry bunches per $1.62m^2$ ranged from 43.4 to 61.4, while the weight of berries per $1.62m^2$ was the greatest when they were collected 49 days after flowering. The root fresh weight per $1.62m^2$ was increased by 0.21 - 1.00 kg compared with that before the test, but root weight gain was decreased as the berry collection time was delayed. Total ginsenoside content of 4-year-old ginseng was the highest when berries were collected 7 days after flowering, while the ginsenoside-Re contents was the highest when collection was done 14 days after flowering. Conclusions: The most suitable period for ginseng berry collection was proposed to be from 14 to 21 days after flowering, as this is when the content of ginsenoside-Re, which is useful as a medicinal or cosmetic material, is still high and the ginseng root has not yet decreased in weight.

Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell

  • Park, Eun-Hwa;Kim, Young-Joo;Yamabe, Noriko;Park, Soon-Hye;Kim, Ho-Kyong;Jang, Hyuk-Jai;Kim, Ji Hoon;Cheon, Gab Jin;Ham, Jungyeob;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • Background: Research has been conducted with regard to the development of methods for improving the pharmaceutical effect of ginseng by conversion of ginsenosides, which are the major active components of ginseng, via high temperature or high-pressure processing. Methods: The present study sought to investigate the anticancer effect of heat-processed American ginseng (HAG) in human gastric cancer AGS cells with a focus on assessing the role of apoptosis as an important mechanistic element in its anticancer actions. Results and Conclusion: HAG significantly reduced the cancer cell proliferation, and the contents of ginsenosides Rb1 and Re were markedly decreased, whereas the peaks of less-polar ginsenosides [20(S,R)-Rg3, Rk1, and Rg5] were newly detected. Based on the activity-guided fractionation of HAG, ginsenoside 20(S)-Rg3 played a key role in inducing apoptosis in human gastric cancer AGS cells, and it was generated mainly from ginsenoside Rb1. Ginsenoside 20(S)-Rg3 induced apoptosis through activation of caspase-3, caspase-8, and caspase-9, as well as regulation of Bcl-2 and Bax expression. Taken together, these findings suggest that heat-processing serves as an increase in the antitumor activity of American ginseng in AGS cells, and ginsenoside 20(S)-Rg3, the active component produced by heat-processing, induces the activation of caspase-3, caspase-8, and caspase-9, which contributes to the apoptotic cell death.