• Title/Summary/Keyword: Ginsenoside Rh2

Search Result 237, Processing Time 0.019 seconds

Effect of Red Ginseng and Its Representative Constituents, Ginsenosides Rg3 and Rh2, on Dextran Sulfate Sodium-induced Colitis in Mice

  • Yoo, Young-Ik;Lee, Hae-Sung;Kim, Dong-Hyun;Han, Myung-Joo
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.262-266
    • /
    • 2009
  • To evaluate the anticolitic effect of red ginseng (RG, the steamed root of Panax ginseng CA. Meyer, Araliaceae), RG and its representative constituents, ginsenosides Rg3 and Rh2, were orally administered to dextran sulfate sodium (DSS)-induced colitic mice and inflammatory markers investigated. RG and its constituents, ginsenosides Rg3 and Rh2, inhibited colon shortening and myeloperoxidase activity induced by DSS. The ginsenosides Rg3 and Rh2 inhibited mRNA expression of interleukin (IL)-$1{\beta}$ as well as protein levels of IL-$1{\beta}$ and IL-6. These ginsenosides also inhibited the activation of a transcription nuclear factor (NF)-${\kappa}B$. Ginsenoside Rh2 was a more potent inhibitor than ginsenoside Rg3. The anticolitic effects of these ginsenosides were comparable with sulfasalazine.

Effects of Minor Ginsenosides, Ginsenoside Metabolites, and Ginsenoside Epimers on the Growth of Caenorhabditis elegans

  • Lee, Joon-Hee;Ahn, Ji-Yun;Shin, Tae-Joon;Choi, Sun-Hye;Lee, Byung-Hwan;Hwang, Sung-Hee;Kang, Ji-Yeon;Kim, Hyeon-Joong;Park, Chan-Woo;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.375-383
    • /
    • 2011
  • In the previous report, we have demonstrated that ginsenoside Rc, one of major ginsenosides, is a major component for the restoration for normal growth of worms in cholesterol-deprived medium. In the present study, we further investigated the roles of minor ginsenosides, such as ginsenoside $Rh_1$ and $Rh_2$, ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) and ginsenoside epimers such as 20(R)- and 20(S)-ginsenoside $Rg_3$ in cholesterol-deprived medium. We found that ginsenoside $Rh_1$ almost restored normal growth of worms in cholesterol-deprived medium in F1 generation. However, supplement of ginsenoside $Rh_2$ caused a suppression of worm growths in cholesterol-deprived medium. In addition, CK and PPD also slightly restored normal growth of worms in cholesterol-deprived medium but PPT not. In experiments using ginsenoside epimers, supplement of 20(S)- but not 20(R)-ginsenoside $Rg_3$ in cholesterol-deprived medium also almost restored worm growth. These results indicate that the absence or presence of carbohydrate component at backbone of ginsenoside, the number of carbohydrate attached at carbon-3, and the position of hydroxyl group at carbon-20 of ginsenoside might plays important roles in restoration of worm growth in cholesterol-deprived medium.

Antioxidative effect of active components of red ginseng

  • Kyu Nam;Kim, Jung-Sun;Baek, Bong-Sook;Kim, Yu-Jung;Chung, Hae-Young
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.224-224
    • /
    • 1996
  • 홍삼 총 사포닌 투여군은 대조군과 비교시 total free radical 및 malondialdchydc 농도는 유의상 있게 감소되었으며, 단백질의 carbonyl 농도는 다소 감소하는 경향을 나타내었다. 그리고 홍삼 총 사포닌 투여군의 경우 Cu, Zn-SOD, catalasc, GSII reductase 등의 항산화 효소와 nonprotein-SH가 대조군 보다 증가되었다. 홍삼 총 사포닌의 구성성분들인 ginsenoside Rb$_1$, Rb$_2$, Rc, Rd, Re, Rg$_1$, Rh$_1$, Rh$_2$, Rf 중 ginsenoside Rh$_2$는 catalase 활성을 대조군보다 유의성있게 증가시켰으며, ginsenoside Rh$_1$ 및 Rc의 경우 GSII peroxidase 활성이 증가하는 경향을 나타내었다. 그리고 Cu, Zn-SOD의 경우 ginsenoside Rc는 대조군보다 유의성있게 감소시켰으며, GSII reductase의 경우 유의성있는 변화는 관찰되지 않았다.

  • PDF

Ginsenoside Rh2 reduces m6A RNA methylation in cancer via the KIF26B-SRF positive feedback loop

  • Hu, Chunmei;Yang, Linhan;Wang, Yi;Zhou, Shijie;Luo, Jing;Gu, Yi
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.734-743
    • /
    • 2021
  • Background: The underlying mechanisms of the potential tumor-suppressive effects of ginsenoside Rh2 are complex. N6-methyladenosine (m6A) RNA methylation is usually dysregulated in cancer. This study explored the regulatory effect of ginsenoside Rh2 on m6A RNA methylation in cancer. Methods: m6A RNA quantification and gene-specific m6A RIP-qPCR assays were applied to assess total and gene-specific m6A RNA levels. Co-immunoprecipitation, fractionation western blotting, and immunofluorescence staining were performed to detect protein interactions and distribution. QRT-PCR, dual-luciferase, and ChIP-qPCR assays were conducted to check the transcriptional regulation. Results: Ginsenoside Rh2 reduces m6A RNA methylation and KIF26B expression in a dose-dependent manner in some cancers. KIF26B interacts with ZC3H13 and CBLL1 in the cytoplasm of cancer cells and enhances their nuclear distribution. KIF26B inhibition reduces m6A RNA methylation level in cancer cells. SRF bound to the KIF26B promoter and activated its transcription. SRF mRNA m6A abundance significantly decreased upon KIF26B silencing. SRF knockdown suppressed cancer cell proliferation and growth both in vitro and in vivo, the effect of which was partly rescued by KIF26B overexpression. Conclusion: ginsenoside Rh2 reduces m6A RNA methylation via downregulating KIF26B expression in some cancer cells. KIF26B elevates m6A RNA methylation via enhancing ZC3H13/CBLL1 nuclear localization. KIF26B-SRF forms a positive feedback loop facilitating tumor growth.

High Performance Liquid Chromatographic Isolation of Ginsenoside $-Rf,\;-Rg_2\;and\;-Rh_1$ (고속액체(高速液體) Chromatography에 의(依)한 $Ginsenoside-Rf,\;Rg_2$$Rh_1$의 분리(分離))

  • Choi, Jin-Ho;Kim, Woo-Jung;Hong, Soon-Keun;Oh, Sung-Ki;Oura, Hikokichi
    • Applied Biological Chemistry
    • /
    • v.23 no.4
    • /
    • pp.206-210
    • /
    • 1980
  • The minor components of $saponin-ginsenoside-Rf,\;-Rg_2\;and\;-Rh_1$ were isolated from Panax ginseng C.A. Meyer by preparative, semi-preparative and analtical high performance liquid chromatography. The rapid method developed in this work was proved to be very effective in separation and isolation of these minor ginsenosides. A further isolation was achieved by using the recycling technique.

  • PDF

Ginsenoside Rb1 is Transformed into Rd and Rh2 by Microbacterium trichothecenolyticum

  • Kim, Hansoo;Kim, Jeong-Hoon;Lee, Phil Young;Bae, Kwang-Hee;Cho, Sayeon;Park, Byoung Chul;Shin, Heungsop;Park, Sung Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1802-1805
    • /
    • 2013
  • Ginsenosides are the most important ingredient of ginseng and are known to possess many pharmacological and biological effects. Rb1, a major protopanaxadiol ginsenoside, is the most abundant ginsenoside in Panax ginseng C.A Meyer and can be hydrolyzed into more pharmaceutically potent minor ginsenosides. To identify a microorganism that is capable of converting Rb1 into other ginsenosides, we screened 12 Microbacterium spp., and M. trichothecenolyticum was identified as a likely candidate. M. trichothecenolyticum converted Rb1 into Rd and then into Rh2 based on TLC and HPLC analyses of reaction products. This biotransformation method can be easily applied for mass production of Rd and Rh2 by using Rb1.

Anti-cancer and anti-inflammatory effects of convergence of ginsenoside Rh2, compound K isolated from amplified red ginseng (증폭시킨 홍삼으로부터 분리한 ginsenoside Rh2, compound K의 융복합적 항암 및 항염효과)

  • Kim, Young-Ho;Kim, Jong-Du
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.285-295
    • /
    • 2017
  • This study aims to provide basic data on useful functional ingredients in red ginseng by studying the anti-inflammatory and anti-cancer effects of convergence of ginsenoside Rh2(Rh2) and compound K(CK) isolated from amplified red ginseng. Therefore we examined cytotoxicity in Hep3B, activity of IL-6 induced STAT3 luciferase and survival concentration of cells in B16F10 and HaCa T. According to the experimental results, when the Rh2 and CK mixture were 10 ug/ml, there was no cytotoxicity in Hep3B cells and the anti-inflammatory effect of IL-6 reduction ratio was 102%. In addition, Rh2 and CK mixture were observed to be toxic in melanoma cell line B16F10 and HaCa T (human keratinocyte) at 50 uM. FACS(fluorescence activated cell sorting) analysis showed that annexin V was not expressed and melanoma cells and keratinocyte were desorbed and killed. It can be assumed that the mechanism of killing through this phenomenon is due to the cell death of anoikis-type, and it is necessary to study the changes of cell adhesion proteins in the future in order to clarify the cell death signal system.

Protopanaxatriol Ginsenoside Rh1 Upregulates Phase II Antioxidant Enzyme Gene Expression in Rat Primary Astrocytes: Involvement of MAP Kinases and Nrf2/ARE Signaling

  • Jung, Ji-Sun;Lee, Sang-Yoon;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • Oxidative stress activates several intracellular signaling cascades that may have deleterious effects on neuronal cell survival. Thus, controlling oxidative stress has been suggested as an important strategy for prevention and/or treatment of neurodegenerative diseases. In this study, we found that ginsenoside Rh1 inhibited hydrogen peroxide-induced reactive oxygen species generation and subsequent cell death in rat primary astrocytes. Rh1 increased the expression of phase II antioxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1, superoxide dismutase-2, and catalase, that are under the control of Nrf2/ARE signaling pathways. Further mechanistic studies showed that Rh1 increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to the antioxidant response element (ARE), and increased the ARE-mediated transcription activities in rat primary astrocytes. Analysis of signaling pathways revealed that MAP kinases are important in HO-1 expression, and act by modulating ARE-mediated transcriptional activity. Therefore, the upregulation of antioxidant enzymes by Rh1 may provide preventive therapeutic potential for various neurodegenerative diseases that are associated with oxidative stress.

Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells

  • Lee, Hyunkyung;Lee, Seungyeon;Jeong, Dawoon;Kim, Sun Jung
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.455-462
    • /
    • 2018
  • Background: Ginsenoside Rh2 has been known to enhance the activity of immune cells, as well as to inhibit the growth of tumor cells. Although the repertoire of genes regulated by Rh2 is well-known in many cancer cells, the epigenetic regulation has yet to be determined, especially for comprehensive approaches to detect methylation changes. Methods: The effect of Rh2 on genome-wide DNA methylation changes in breast cancer cells was examined by treating cultured MCF-7 with Rh2. Pyrosequencing analysis was carried out to measure the methylation level of a global methylation marker, LINE1. Genome-wide methylation analysis was carried out to identify epigenetically regulated genes and to elucidate the most prominent signaling pathway affected by Rh2. Apoptosis and proliferation were monitored to examine the cellular effect of Rh2. Results: LINE1 showed induction of hypomethylation at specific CpGs by 1.6-9.1% (p < 0.05). Genome-wide methylation analysis identified the "cell-mediated immune response"-related pathway as the top network. Cell proliferation of MCF-7 was retarded by Rh2 in a dose-dependent manner. Hypermethylated genes such as CASP1, INSL5, and OR52A1 showed downregulation in the Rh2-treated MCF-7, while hypomethylated genes such as CLINT1, ST3GAL4, and C1orf198 showed upregulation. Notably, a higher survival rate was associated with lower expression of INSL5 and OR52A1 in breast cancer patients, while with higher expression of CLINT1. Conclusion: The results indicate that Rh2 induces epigenetic methylation changes in genes involved in immune response and tumorigenesis, thereby contributing to enhanced immunogenicity and inhibiting the growth of cancer cells.