• Title/Summary/Keyword: Ginsenoside Rh₂(G-Rh₂)

Search Result 75, Processing Time 0.03 seconds

Production of the Rare Ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by Enzymatic Conversion Combined with Acid Treatment and Evaluation of Its Anti-Cancer Activity

  • Song, Bong-Kyu;Kim, Kyeng Min;Choi, Kang-Duk;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1233-1241
    • /
    • 2017
  • The ginsenoside Rh2 has strong anti-cancer, anti-inflammatory, and anti-diabetic effects. However, the application of ginsenoside Rh2 is restricted because of the small amounts found in Korean white and red ginsengs. To enhance the production of ginsenoside Rh2-MIX (comprising 20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3 as a 10-g unit) with high specificity, yield, and purity, a new combination of enzymatic conversion using the commercial enzyme Viscozyme L followed by acid treatment was developed. Viscozyme L treatment at pH 5.0 and $50^{\circ}C$ was used initially to transform the major ginsenosides Rb1, Rb2, Rc, and Rd into ginsenoside F2, followed by acid-heat treatment using citric acid 2% (w/v) at pH 2.0 and $121^{\circ}C$ for 15 min. Scale-up production in a 10-L jar fermenter, using 60 g of the protopanaxadiol-type ginsenoside mixture from ginseng roots, produced 24 g of ginsenoside Rh2-MIX. Using 2 g of Rh2-MIX, 131 mg of 20(S)-Rh2, 58 mg of 20(R)-Rh2, 47 mg of Rk2, and 26 mg of Rh3 were obtained at over 98% chromatographic purity. Then, the anti-cancer effect of the four purified ginsenosides was investigated on B16F10, MDA-MB-231, and HuH-7 cell lines. As a result, these four rare ginsenosides markedly inhibited the growth of the cancer cell lines. These results suggested that rare ginsenoside Rh2-MIX could be exploited to prepare an anti-cancer supplement in the functional food and pharmaceutical industries.

Ginsenoside Rh2 inhibits proliferation of human promyelocytic HL-60 leukemia cells via $G_0/G_1$ phase arrest and induction of differentiation

  • Cho, Seoung-Hee;Kim, Dong-Hyun;Lee, Kyung-Tae
    • Proceedings of the Ginseng society Conference
    • /
    • 2006.05a
    • /
    • pp.3-12
    • /
    • 2006
  • 1 The present work was performed to investigate the effects of ginsenoside Rh2 on proliferation, cell cycle-regulation and differentiation of human leukemia HL-60 cells as well as the underlying mechanisms for these effects. 2 Ginsenoside Rh2 potently inhibited the proliferation of HL-60 cells in both a dose- and time-dependent manner with an $IC_{50}$, $20{\mu}M$. 3 DNA flow-cytometry indicated that ginsenoside Rh2 markedly induced a $G_1$ phase arrest of HL-60 cells. 4 Among the $G_1$ phase cell cycle-related proteins, the levels of cyclin-dependent kinase(CDK)4, 6 and cyclin D1, cyclin D2, cyclin D3 were reduced by ginsenoside Rh2, whereas the steadystate levels of CDK2 and cyclin E were unaffected. 5 The protein levels of a CDK inhibitor p16, $p21^{CIP1/WAF1}$ and $p27^{KIP1}$ were markedly increased by ginsenoside Rh2. 6 Ginsenoside Rh2 markedly enhanced the binding of $p21^{CIP1/WAF1}$ and $p27^{KIP1}$ with CDK2 and CDK6, resulting in the reduced activity of both kinases and the hypophosphorylation of Rb protein. 7 We furthermore suggest that ginsenoside Rh2 is a potent inducer of the differentiation of HL-60 cells, based on observations such as a reduction of the nitroblue tetrazolium level, an increase in the esterase activities and phagocytic activity, morphology changes, and the expression of CD11b, CD14, CD64 and CD66b surface antigens. 8 In conclusion, the onset of ginsenoside Rh2-induced the $G_0/G_1$ arrest of HL-60 cells prior to the differentiation is linked to a sharp up-regulation of the $p21^{CIP1/WAF1}$ level and a decrease in the CDK2, CDK4 and CDK6 activities. This is the first report demonstrating that ginsenoside Rh2 potently inhibits the proliferation of human promyelocytic HL-60 cells via the $G_1$ phase cell cycle arrest and differentiation induction.

  • PDF

Ginsenoside Rh2 Induces Apoptosis via Activation of Caspase-1 and -3 and Up-Regulation of Bax in Human Neuroblastoma

  • Kim, Young-Soak;Jin, Sung-Ha
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.834-839
    • /
    • 2004
  • In human neuroblastoma SK-N-BE(2) cells undergoing apoptotic death induced by ginsenos-ide Rh2, a dammarane glycoside that was isolated from Panax ginseng C. A. Meyer, caspase-1 and caspase-3 were activated. The expression of Bax was increased in the cells treated with ginsenoside Rh2, whereas Bcl-2 expression was not altered. Treatment with caspase-1 inhibi-tor, Ac-YVAD-CMK, or caspase-3 inhibitor, Z-DEVD-FMK, partially inhibited ginsenoside Rh2-induced cell death but almost suppressed the cleavage of the 116 kDa PARP into a 85 kDa fragment. When the levels of p53 were examined in this process, p53 accumulated rapidly in the cells treated early with ginsenoside Rh2. These results suggest that activation of caspase-1 and -3 and the up-regulation of Bax are required in order for apoptotic death of SK-N-BE(2) cells to be induced by ginsenoside Rh2, and p53 plays an important role in the pathways to promote apoptosis.

AMP-activated protein kinase determines apoptotic sensitivity of cancer cells to ginsenoside-Rh2

  • Kim, Min-Jung;Yun, Hee;Kim, Dong-Hyun;Kang, Insug;Choe, Wonchae;Kim, Sung-Soo;Ha, Joohun
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • Ginseng saponins exert various important pharmacological effects with regard to the control of many diseases, including cancer. In this study, the anticancer effect of ginsenosides on human cancer cells was investigated and compared. Among the tested compounds, ginsenoside-Rh2 displays the highest inhibitory effect on cell viability in HepG2 cells. Ginsenoside-Rh2, a ginseng saponin isolated from the root of Panax ginseng, has been suggested to have potential as an anticancer agent, but the underlying mechanisms remain elusive. In the present study, we have shown that cancer cells have differential sensitivity to ginsenoside-Rh2-induced apoptosis, raising questions regarding the specific mechanisms responsible for the discrepant sensitivity to ginsenoside-Rh2. In this study, we demonstrate that AMP-activated protein kinase (AMPK) is a survival factor under ginsenoside-Rh2 treatment in cancer cells. Cancer cells with acute responsiveness of AMPK display a relative resistance to ginsenoside-Rh2, but cotreatment with AMPK inhibitor resulted in a marked increase of ginsenoside-Rh2-induced apoptosis. We also observed that p38 MAPK (mitogen-activated protein kinase) acts as another survival factor under ginsenoside-Rh2 treatment, but there was no signaling crosstalk between AMPK and p38 MAPK, suggesting that combination with inhibitor of AMPK or p38 MAPK can augment the anticancer potential of ginsenoside Rh2.

Preparation of $Ginsenoside-Rh_2$ from Dammarane Saponins of Panax ginseng Leaves (인삼잎의 Dammarane계 사포닌으로부터 $Ginsenoside-Rh_2$의 제조)

  • Cha, Bae-Cheon;Lee, Sang-Guk
    • YAKHAK HOEJI
    • /
    • v.38 no.4
    • /
    • pp.425-429
    • /
    • 1994
  • The genuine aglycone, 20(S)-protopanaxadiol, obtained from the leaves of Panax ginseng as a result of direct alkaline treatment was isolated and characterized by spectroscopic evidences. The study on the yield of genuine aglycone which is produced from the treatment of some kinds of alkali was carried out. $Ginsenoside-Rh_2$ was synthesized by conjugation of 2,3,4,6-tetra-O-acetyl-${\alpha}$-D-glucopyranosyl bromide to 20(S)-protopanaxadiol in the presence of silver carbonate and cadmium cabonate. The preparation of $ginsenoside-Rh_2$ by this method is a new one which the yield of this saponin can be improved in the mild condition.

  • PDF

The interaction of serum albumin with ginsenoside Rh2 resulted in the downregulation of ginsenoside Rh2 cytotoxicity

  • Lin, Yingjia;Li, Yang;Song, Zhi-Guang;Zhu, Hongyan;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.330-338
    • /
    • 2017
  • Background: Ginsenoside Rh2 (G-Rh2) is a ginseng saponin that is widely investigated because of its remarkable antitumor activity. However, the molecular mechanism by which (20S) G-Rh2 triggers its functions and how target animals avoid its cytotoxic action remains largely unknown. Methods: Phage display was used to screen the human targets of (20S) G-Rh2. Fluorescence spectroscopy and UV-visible absorption spectroscopy were used to confirm the interaction of candidate target proteins and (20S) G-Rh2. Molecular docking was utilized to calculate the estimated free energy of binding and to structurally visualize their interactions. MTT assay and immunoblotting were used to assess whether human serum albumin (HSA), bovine serum albumin (BSA), and bovine serum can reduce the cytotoxic activity of (20S) G-Rh2 in HepG2 cells. Results: In phage display, (20S) G-Rh2-beads and (20R) G-Rh2-beads were combined with numerous kinds of phages, and a total of 111 different human complementary DNAs (cDNA) were identified, including HSA which had the highest rate. The binding constant and number of binding site in the interaction between (20S)-Rh2 and HSA were $3.5{\times}10^5M^{-1}$ and 1, and those in the interaction between (20S) G-Rh2 and BSA were $1.4{\times}10^5M^{-1}$ and 1. The quenching mechanism is static quenching. HSA, BSA and bovine serum significantly reduced the proapoptotic effect of (20S) G-Rh2. Conclusion: HSA and BSA interact with (20S) G-Rh2. Serum inhibited the activity of (20S) G-Rh2 mainly due to the interaction between (20S) G-Rh2 and serum albumin (SA). This study proposes that HSA may enhance (20S) G-Rh2 water solubility, and thus might be used as nanoparticles in the (20S) G-Rh2 delivery process.

Inhibitory Effect of Protopanxatriol Ginsenosides in an Oxazolone-induced Mouse Psoriatic Model

  • Shin, Young-Wook;Bae, Eun-Ah;Han, Myung-Joo;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.95-99
    • /
    • 2006
  • When the inhibitory effect of ginsenoside (G) Re isolated from ginseng and its metabolites G-Rg1, G-F1, G-Rh1 and protopanaxatriol in mouse ear skin psoriasis stimulated by oxazolone was investigated, G-Re and its metabolites suppressed mouse ear swelling stimulated by oxazolone. Among these agents tested, G-Rh1 most potently suppressed ear swelling as well as mRNA expression of COX-2 and proinflammatory cytokines $IL-1{\beta},\;TNF-{\alpha}$ and $interferon-{\gamma}$. These findings suggest that G-Rh1 may improve chronic dermatitis and psoriasis.

Differential Role of protein Kinase C in Ginsenoside $Rh_2$ - induced Apoptosis in SK-N-BE(2) and C6Bu-1 Cells

  • Young Sook Kim;Sun
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.244-252
    • /
    • 1998
  • Ginsenoside Rh, (G-Rh,) from Panax ginseng induced morphological features of apoptosis and DNA fragmentation as a biochemical marker of apoptosis confirmed by TUNEL reaction and agarose gel electrophoresis in human neuroblastoma SK-N-BE(2) and rat glioma C6Bu-1 cells During apoptosis by G-Rh2, protein kinase C (PKC) isoforms were analysed by immunoblotting. In SK-N-BE(2) cells, the levels of a, p and ${\gamma}$ subtypes were increased by undergoing apoptosis, while PKC e isoform increased early in treatment (3 h and 6 h). In addition, PKC s isoform gradually decreased during apoptosis by G-Rh2 and PKC $\theta$ isoform was detected in neither untreated- nor G-Rh1-treated SK-N-BE(2) cells (data not shown). However, no significant changes in the level of S and s isoforms were observed in C6Bu-1 cells undergoing apoptosis by G-Rh2. These results suggest that PKC subtypes may play differential roles in apoptotic signal pathways and their roles can be cell type-specific in apoptosis induced by G-Rh2.

  • PDF

Isolation of Ginsenoside${-Rh}_1$ and ${-Rh}_2$ by High Performance Liquid Chromatography (고속액체(高速液體) 크로마토그래피에 의(依)한 Ginsenoside ${-Rh}_1$${-Rh}_2$ 의 분리(分離))

  • Choi, Jin-Ho;Kim, Woo-Jung;Hong, Soon-Keun;Oh, Sung-Ki;Oura, Hikokichi
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.57-66
    • /
    • 1981
  • An effective method for isolation of the major components of ginseng saponin such as $ginsenoside-Rb_{1},\;-Rb_2,$ -Rc, -Rd, -Re and $-Rg_1$, and the minor components such as ginsenoside-Rf, $-Rg_2,\;and-Rh_1$, was developed and reported in previous papers (J. Korean Agr. Chem. Soc., 23(4), 199 and 206(1980) The conditions and procedures used for isolation and identification for ginsenosides described in the previous papers were not sufficient enough for clean separation of minor components, $ginsenoside-Rh_1,\;and-Rh_2$. In this work, modifications in extraction method and in mobile phase for HPLC were attempted. It was found that application of ethyl acetate extraction at $60^{\circ}C$ for 3 hr on crude saponin resulted in a removal of diol group saponin from crude saponin which made it possible for using higher portion of acetonitrile in mobile phase. The mixed solvents of acetonitrile : water (92 : 8 and 94 : 6) gave excellent resolution of $ginsenoside-Rh_1\;and\;-Rh_2$.

  • PDF

Differential Expression of Protein Kinase C Subtypes during Ginsenoside Rh2-Induced Apoptosis in SK-N-BE(2) and C6Bu-1 Cells

  • Kim, Young-Sook;Jin, Sung-Ha;Lee, You-Hiu;Park, Jong-Dae;Kim, Shin-Il
    • Archives of Pharmacal Research
    • /
    • v.23 no.5
    • /
    • pp.518-524
    • /
    • 2000
  • We examined the modulation of protein kinase C (PKC) subtypes during apoptosis induced by ginsenoside Rh2 (G-Rh2) in human neuroblastoma SK-N-Bl(2) and rat glioma C6Bu-1 cells. Apoptosis induced by C-Rh2 in both cell lines was confirmed, as indicated by DNA fragmentation and in situ strand breaks, and characteristic morphological changes. During apoptosis induced by G-Rh2 in SK-N-BE(2) cells, PKC subtypes $\alpha$, $\beta$ and $\gamma$ were progressively increased with prolonged treatment, whereas PKC $\delta$ increased transiently at 3 and 6 h and PKC $\varepsilon$ was gradually down-regulated after 6 h following the treatment. On the other hand, PKC subtype $\beta$ markedly increased at 24 h when maximal apoptosis was achieved. In C6Bu-l cells, no significant changes in PKC subtypes $\alpha$, $\gamma$, $\delta$, $\varepsilon$ and $\beta$ were observed during apoptosis induced by G-Rh2. These results suggest the evidence for a possible role of PKC subtype in apoptosis induced by G-Rh2 in SK-N-BE(2) cells but not in C6Bu-1 cells, and raise the possibility that G-Rh2 may induce apoptosis via different pathways interacting with or without PKC in different cell types.

  • PDF