• Title/Summary/Keyword: Ginsenoside Rb$_1$

Search Result 532, Processing Time 0.027 seconds

Screening and Characterization of an Enzyme with ${\beta}-Glucosidase$ Activity from Environmental DNA

  • Kim, Soo-Jin;Lee, Chang-Muk;Kim, Min-Young;Yeo, Yun-Soo;Yoon, Sang-Hong;Kang, Han-Cheol;Koo, Bon-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.905-912
    • /
    • 2007
  • A novel ${\beta}-glucosidase$ gene, bglA, was isolated from uncultured soil bacteria and characterized. Using genomic libraries constructed from soil DNA, a gene encoding a protein that hydrolyzes a fluorogenic analog of cellulose, 4-methylumbelliferyl ${\beta}-D-cellobioside$ (MUC), was isolated using a microtiter plate assay. The gene, bglA, was sequenced using a shotgun approach, and expressed in E. coli. The deduced 55-kDa amino acid sequence for bglA showed a 56% identity with the family 1 glycosyl hydrolase Chloroflexus aurantiacus. BglA included two conserved family 1 glycosyl hydrolase regions. When using $p-nitrophenyl-{\beta}-D-glucoside$ (pNPG) as the substrate, the maximum activity of the purified ${\beta}-glucosidase$ exhibited at pH 6.5 and $55^{\circ}C$, and was enhanced in the presence of $Mn^{2+}$. The $K_m\;and\;V_{max}$ values for the purified enzyme with pNPG were 0.16 mM and $19.10{\mu}mol/min$, respectively. The purified BglA enzyme hydrolyzed both pNPG and $p-nitrophenyl-{\beta}-D-fucoside$. The enzyme also exhibited substantial glycosyl hydrolase activities with natural glycosyl substrates, such as sophorose, cellobiose, cellotriose, cellotetraose, and cellopentaose, yet low hydrolytic activities with gentiobiose, salicin, and arbutin. Moreover, BglA was able to convert the major ginsenoside $Rb_1$ into the pharmaceutically active minor ginsenoside Rd within 24 h.

Subacute Oral Toxicity Study of Korean Red Ginseng Extract in Sprague-Dawley Rats

  • Park, Sang-Jin;Lim, Kwang-Hyun;Noh, Jeong-Ho;Jeong, Eun Ju;Kim, Yong-Soon;Han, Byung-Cheol;Lee, Seung-Ho;Moon, Kyoung-Sik
    • Toxicological Research
    • /
    • v.29 no.4
    • /
    • pp.285-292
    • /
    • 2013
  • Ginseng is a well-known traditional medicine used in Asian countries for several thousand years, and it is currently applied to medicine, cosmetics, and nutritional supplements due to its many healing and energygiving properties. It is well demonstrated that ginsenosides, the main ingredient of ginseng, produce a variety of pharmacological and therapeutic effects on central nerve system (CNS) disorders, cardiovascular disease, endocrine secretions, aging, and immune function. Korean red ginseng extract is a dietary supplement containing ginsenoside Rb1 and ginsenoside Rg1 extracted from Panax ginseng. While the pharmacokinetics and bioavailability of the extract have been well established, its toxicological properties remain obscure. Thus, four-week oral toxicity studies in rats were conducted to investigate whether Korean red ginseng extract could have a potential toxicity to humans. The test article was administered once daily by oral gavage to four groups of male and female Sprague-Dawley (SD) rats at dose levels of 0, 500, 1,000, and 2,000 mg/kg/day for four weeks. Neither deaths nor clinical symptoms were observed in any group during the experiment. Furthermore, no abnormalities in body weight, food consumption, ophthalmology, urinalysis, hematology, serum biochemistry, gross findings, organ weights, or histopathology were revealed related to the administration of the test article in either sex of any dosed group. Therefore, a target organ was not determined in this study, and the no observed adverse effect level (NOAEL) of Korean red ginseng extract was established to be 2,000 mg/kg/day.

The Inhibition of Epileptogenesis During Status Epilepticus by Ginsenosides of Korean Red Ginseng and Ginseng Cell Culture (Dan25)

  • N.E., Chepurnova;Park, Jin-Kyu;O.M., Redkozubova;A.A., Pravdukhina;K.R., Abbasova;E.V., Buzinova;A.A., Mirina;D.A., Chepurnova;A.A., Dubina;U.A., Pirogov;M., De Curtis;L., Uva;S.A., Chepurnov
    • Journal of Ginseng Research
    • /
    • v.31 no.3
    • /
    • pp.159-174
    • /
    • 2007
  • Pharmacology of Korean Red ginseng gives us unique possibility to develop new class of antiepileptic drugs today and to improve one's biological activity. The chemical structures of ginsenosides (GS) have some principal differences from well-known antiepileptic new generation drugs. The antiepileptic effect of GS was also demonstrated in all models of epilepsy in rats (young and adult), which have studied, in all models of epilepsy including status epilepticus (SE), induced by lithium - pilocarpine. In our experiments in rats new evidences on protective effects were exerted as a result of premedication by GS. Pre-treatment of several GS could induce decrease of the seizures severity and brain structural damage (by MRI), neuronal degeneration in hippocampus. Wave nature of severity of motor seizures during convulsive SE was observed during lithium-pilocarpine model of SE in rats (the first increase of seizures was 30 min after the beginning of SE and the second - 90 min after. The efficacy of treatment on SE by ginsenoside as expected was observed after no less 3 weeks by daily GS i.p. administration. It is blocked SE or significantly decrease the severity of seizures during SE. The implication of presented data is that combination of ginsenosides from Korean Red ginseng and ginseng cell culture Dan25 that could be applied for prevention of epileptical status development. However, a development of optimal ratio of different ginsenosides $(Rb_1$ Rc, Rg, Rf,) should consummate in the new antiepileptic drug development.

Changes in ginsenoside compositions and antioxidant activities of hydroponic-cultured ginseng roots and leaves with heating temperature

  • Hwang, Cho Rong;Lee, Sang Hoon;Jang, Gwi Yeong;Hwang, In Guk;Kim, Hyun Young;Woo, Koan Sik;Lee, Junsoo;Jeong, Heon Sang
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.180-186
    • /
    • 2014
  • Background: This study evaluated changes in ginsenoside compositions and antioxidant activities in hydroponic-cultured ginseng roots (HGR) and leaves (HGL) with heating temperature. Methods: Heat treatment was performed at temperatures of $90^{\circ}C$, $110^{\circ}C$, $130^{\circ}C$, and $150^{\circ}C$ for 2 hours Results: The ginsenoside content varied significantly with heating temperature. The levels of ginsenosides Rg1 and Re in HGR decreased with increasing heating temperature. Ginsenosides F2, F4, Rk3, Rh4, Rg3 (S form), Rg3 (R form), Rk1, and Rg5, which were absent in the raw ginseng, were formed after heat treatment. The levels of ginsenosides Rg1, Re, Rf, and Rb1 in HGL decreased with increasing heating temperature. Conversely, ginsenosides Rk3, Rh4, Rg3 (R form), Rk1, and Rg5 increased with increasing heating temperature. In addition, ginsenoside contents of heated HGL were slightly higher than those of HGR. The highest extraction yield was 14.39% at $130^{\circ}C$, whereas the lowest value was 10.30% at $150^{\circ}C$ After heating, polyphenol contents of HGR and HGL increased from 0.43 mg gallic acid equivalent/g (mg GAE eq/g) and 0.74 mg GAE eq/g to 6.16 mg GAE eq/g and 2.86 mg GAE eq/g, respectively. Conclusion: Antioxidant activities of HGR and HGL, measured by 1,1-diphenyl-2-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging ability, increased with increasing heating temperature. These results may aid in improving the biological activity and quality of ginseng subjected to heat treatments.

Comparison of Growth Characteristics and Ginsenoside Contents of 3-Year-Old Ginseng (Panax ginseng C. A. Meyer) by Drainage Class and Shade Material in Paddy Soil (논토양에서 해가림 유형별 3년생 인삼의 생육과 진세노사이드함량 비교)

  • Lee, Sung-Woo;Kim, Gum-Sook;Hyun, Dong-Yun;Kim, Yong-Burm;Yeon, Byeong-Yeol;Kang, Seung-Won;Kim, Young-Churl
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.390-396
    • /
    • 2009
  • To select optimal shade material in paddy soil, growth characteristics and ginsenoside contents were investigated in new cultivar, 'Cheonpoong' of three-year-old ginseng cultured under three kinds of shade materials such as three-layered blue and one-layered black PE (polyethylene) net (TBPN), blue PE sheet (BPSS), and aluminium-coated PE sheet (APSS). The order of light transmission ratio and air temperature by shade materials were BPSS > APSS > TBSB among three shade materials. Average soil water tension in PDC and IDC was 64 mbar (absolute soil moisture, 25%) and 123 mbar (absolute soil moisture, 17%), respectively, and soil water tension in IDC was changed more distinctly than that of PDC by season and shade materials. Yield in PDC was distinctly decreased more than that in IDC because of the increase of discolored-leaf and rusted-root ratio. BPSS and TBPN among three shade materials were the most effective on the increase of yield in PDC and IDC, respectively. Ratio of rusty-colored root showed not significant difference by drainage class and shade materials. Contents of panaxatriol ginsenoside (Rg1, Re and Rf) were decreased in PDC, while it of panaxadiol ginsenoside (Rb1, Rc and Rd) were increased in IDC. Total ginsenoside contents of IDC was distinctly higher than that of PDC, and BPSS showed the highest contents among three shade materials regardless of poorly and imperfectly drainage class.

Use of Gold Nanoparticle Fertilizer Enhances the Ginsenoside Contents and Anti-Inflammatory Effects of Red Ginseng

  • Kang, Hee;Hwang, Yun-Gu;Lee, Taek-Guen;Jin, Cheng-Ri;Cho, Chi Heung;Jeong, Hee-Yeong;Kim, Dae-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1668-1674
    • /
    • 2016
  • Red ginseng, a steamed and sun-dried ginseng, is a popular health-promoting food in Korea and other Asian countries. We introduced nanofertilizer technology using gold nanoparticles in an effort to develop red ginseng with an elevated level of ginsenosides, the main active compounds of ginseng. Shoots of 6-year-old ginseng plants were fertilized three times with colloidal gold nanoparticle sprays. Red ginseng extract was prepared from the main roots. The concentrations of gold and ginsenosides were measured following gold nanoparticle treatment. To evaluate the anti-inflammatory effects, mouse peritoneal macrophages of male BALB/c mouse were stimulated with lipopolysaccharide plus interferon-γ in the presence of extracts from red ginseng with or without gold nanoparticle treatment. The content of ginsenosides, such as Rg1, Re, Rf, and Rb1, increased in ginseng treated with gold nanofertilizer whereas the steaming process increased only the levels of Rd and Rg3. The levels of nitric oxide, inducible nitric oxide synthase, and interleukin-6, but not tumor necrosis factor-α, were more suppressed in macrophages treated with extract from gold nanoparticle-treated red ginseng. Our results show that the use of a colloidal gold nanoparticle fertilizer improved the synthesis of ginsenosides in ginseng and enhanced the anti-inflammatory effects of red ginseng. Further research is required to elucidate the causal factors for the gold-induced change in ginsenoside synthesis and to determine the in vivo effect of gold nanoparticle-treated ginseng.

Antioxidant and Hepatoprotective Effects of Hydroponic-cultured Ginseng Folium by fermentation (발효에 의한 수경재배 인삼 잎의 항산화 및 간 보호 효과)

  • Lee, Ah Reum;Park, Jae Ho
    • The Korea Journal of Herbology
    • /
    • v.30 no.4
    • /
    • pp.101-108
    • /
    • 2015
  • Objectives : Positive effects of Ginseng has great research attentions such as anticancer, anti-diabetic, antiaging, liver, immune function, CNS, etc. In this study, we investigated Hydroponic-cultured Ginseng Folium fermented byBacillus subtilisto establish fermentation conditions for enhancing functionality.Methods : Ginseng Folium were cultivated hydroponic-cultured and were extracted with methanol. We inoculateBacillus subtilisfor fermentation by adding to 0%, 3% and 5% sugar respectively and checked antioxidant activities, total phenolic content and total saponin content in 2 days intervals during 11 days. The antioxidant activities were studied by the 1,1-diphenyl-2-picryl hydrazyl(DPPH) radical, 2, 2'-Azino-bis(3-ethylbenzothiazoline-6 sulfonic acid) diammonium salt(ABTS) radical scavenging assay and Reducing power assay. We analyzed the Total phenol content, crude saponin content and ginsenoside content. Moreever, Hepatoprotective effects by Glutamic oxaloacetic transaminase(GOT) and Glutamic pyruvic transaminase(GPT) in Sprague-Dawley rat.Results : The results of DPPH and ABTS were 66.89% and 96.72%, respectively. The reducing power was resulted in optical density of 0.7312 with 3% sugar after 9 days of fermentation. and the concentration at 200 ㎍/㎖. Total phenol content was 36.92㎎/g with 3% sugar after 9 days of fermentation, in which crude saponin content wasn't changed, and ginsenoside content such as Rg3, Re and Rb was increased. Activities of GOT and GPT concentration were decreased in rat.Conclusions : This study suggests that hydroponic-cultured Ginseng Folium fermented byBacillus subtilisin 9 days showed significant efficacy of hepato-protection as well as antioxidant compared to the others. In addition, it shows not only improved value but also utilized hydroponic-cultured Ginseng Folium by fermentation.

HPLC-based metabolic profiling and quality control of leaves of different Panax species

  • Yang, Seung-Ok;Lee, Sang Won;Kim, Young Ock;Sohn, Sang-Hyun;Kim, Young Chang;Hyun, Dong Yoon;Hong, Yoon Pyo;Shin, Yu Su
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.248-253
    • /
    • 2013
  • Leaves from Panax ginseng Meyer (Korean origin and Chinese origin of Korean ginseng) and P. quinquefolius (American ginseng) were harvested in Haenam province, Korea, and were analyzed to investigate patterns in major metabolites using HPLC-based metabolic profiling. Partial least squares discriminant analysis (PLS-DA) was used to analyze the the HPLC chromatogram data. There was a clear separation between Panax species and/or origins from different countries in the PLS-DA score plots. The ginsenoside compounds of Rg1, Re, Rg2, Rb2, Rb3, and Rd in Korean leaves were higher than in Chinese and American ginseng leaves, and the Rb1 level in P. quinquefolius leaves was higher than in P. ginseng (Korean origin or Chinese origin). HPLC chromatogram data coupled with multivariate statistical analysis can be used to profile the metabolite content and undertake quality control of Panax products.

Analysis of Diol- and Triol-Saponins in Ginseng (인삼의 Diol계 및 Triol계 사포닌의 분리분석)

  • Park, Jeong-Il;Park, Man-Gi;Han, Byeong-Hun
    • Journal of Ginseng Research
    • /
    • v.15 no.3
    • /
    • pp.257-262
    • /
    • 1991
  • 1) 인삼 사포닌을 5% 황산으로 가수분해하여 TMS화 한 후 GC로 분석한 결과 인삼중의 모든 사포닌을 diol계 사포닌과 triol계 사포닌으로 나누어 분석할 수 있었다. 2) 시료중의 전체 diol계(PD)와 triol계(PT) 사포닌을 ginsenoside Rb$_1$과 Rg$_1$의 양으로 각각 환산하여 표시하고 미삼에는 백삼에 비해 diol계 사포닌의 함량이 많은 것을 이용하여 PD/PT글 구하고 여기에서 구해진 비를 이용하여 시료중의 백삼 및 미삼의 이론적 함량을 구할 수 있었다. 3) 이 방법의 검출 한계는 백삼의 양으로 0.14$\mu$g이었다.

  • PDF

Content and Composition of Saponin Compounds of Panax Species (Panax(인삼)속 식물의 사포닌화합물 함량 및 조성)

  • 고성룡;최강주
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.254-259
    • /
    • 1995
  • The content and composition of saponin compounds of Panax species were analyzed according to their species, region and processing type of red and white ginseng. The species employed were Korean-, Chinese-, Japanese red ginsengs, and Korean white ginseng of Panax ginseng, American- and Canadian ginsengs of Panax quinquefolium, and Panax notoinseng. Twelve main saponin components in the ginseng were identified and quantified using TLC and HPLC. All three species had remarkably different content and composition. However, within each species they were similar. Twelve major ginsenosides were determined in P. ginseng, eight in p. quinquefolium, and six in P. notoginseng. Of the components of P ginseng Rf, $Rh_1$, $Rh_2$ and Ra were not detected in P quinquefolium, and $Rb_2$, Rc, Rf, $Rh_2$, Ra and Ro not detected in P. notoinseam. Crude saponin content and protopanaxadiol/protopanaxatriol saponin ratio were compared. They were 4.81~5.24% and 1.27~ 1.45 in p. ginsengs, 7.01~7.25% and 2.12~ 2.15 in p. quinquefolium, 9.80% and 0.99 in P. notoineng. The prosapogenin and sapogenin content were different among the Panax species.

  • PDF