• Title/Summary/Keyword: Ginsenoside $Rh_2$

Search Result 238, Processing Time 0.026 seconds

Ginsenosides are active ingredients in Panax ginseng with immunomodulatory properties from cellular to organismal levels

  • You, Long;Cha, Seunghwa;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.711-721
    • /
    • 2022
  • The immune system is one of the most important parts of the human body and immunomodulation is the major function of the immune system. In response to outside pathogens or high inflammation, the immune system is stimulated or suppressed. Thus, identifying effective and potent immunostimulants or immunosuppressants is critical. Ginsenosides are a type of steroid saponin derived from ginseng. Most are harmless to the body and even have tonic effects. In this review, we mainly focus on the immunostimulatory and immunosuppressive roles of two types ginsenosides: the protopanaxadiol (PPD)-type and protopanaxatriol (PPT)-type. PPT-type ginsenosides include Rg1, Rg2, Rh4, Re and notoginsenoside R1, and PPD-type ginsenosides include Rg3, Rh2, Rb1, Rb2, Rc, Rd, compound K (CK) and PPD, which activate the immune responses. In addition, Rg1 and Rg6 belong to PPT-type ginsenosides and together with Rg3, Rb1, Rd, CK show immunosuppressive properties. Current explorations of ginsenosides in immunological areas are in the preliminary stages. Therefore, this review may provide some novel ideas to researchers who study the immunoregulatory roles of ginsenosides.

Changes in the Chemical Components of Red and White Ginseng after Puffing (팽화 가공에 따른 홍삼과 백삼의 성분변화)

  • Kim, Sang-Tae;Jang, Ji-Hyun;Kwon, Joong-Ho;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.355-361
    • /
    • 2009
  • In this study, raw ginseng produced by different methods was puffed, and physicochemical properties were analyzed and compared. Raw ginseng included white ginseng lateral root (WGL), red ginseng lateral root (RGL), red ginseng main root (RGM), and red ginseng main root with 15% (w/w) moisture (RGMM). All samples were puffed at a pressure of 7 kg/cm2. Crude saponin content was increased after puffing compared with that of control ginseng. RGM and RGMM showed significant increases in crude saponin content, from 1.67% and 1.41% to 2.84% and 3.09% (all w/w), respectively. However, the ginsenoside content of WGL was decreased after puffing. Rg3, Rh1, and Rh2 values of red ginseng were increased by puffing compared with those of control red ginseng. The total sugar content of ginseng decreased after puffing. The mineral components of puffed ginseng were similar to those of raw ginseng. Levels of total phenolic compounds and antioxidant activities of ginseng were increased after puffing, and electron-donating ability was greatly increased. The acidic polysaccharide content of ginseng increased slightly and the amino acid content decreased due to the high temperature used during puffing.

Effect of Ginsenosides from Panax ginseng on Proliferation of Human Osteosarcoma Cell $U_2OS$

  • Deqiang Dou;Jie Ren;Yingjie Chen;Youwei Zhang;Xinsheng Yao
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.376-384
    • /
    • 2002
  • Object To find out which of the 27 ginsenosides isolated from Panax ginseng C.A. Mey that may inhibit the proliferation of human osteosaocoma cell line $U_2OS$. Methods Effects of each individual ginsenoside on the proliferation of $U_2OS$ cell were studied by determining the viability of cancer cells during culture with or without the presence of the test compound. DNA assay was determined by flow cytometry. Results Ginsonosides -Ro, $-Rh_l,\;-Rh_2,\;-F_1\;and\;-L_8$ at concentrations of 5 ,umol/L could obviously suppress the proliferation of $U_2OS$ cells while ginsenosides $-Rg_1,\;-F_3,$ -Rf, PPT and PT significantly inhibited the cancer cells. Flow cytometry revealed that ginsenosides $-Ro,-Rg_1-Rf,-F_1-Rh_2,PPT$ and PT induced cell cycle arrest at $G_0/G_1$ phase with obvious decrease of cell count at Sand $G_2+M$ phase, Moreover, ginsenosides $-Rf_1,-Rg_1,\;-F_1$ and PPT induced significantly high rates of cell death as compared with the control. Conclusion These data suggested that ginsenosides inhibited $U_2OS$ proliferation Via cell cycle arrest or induction of cell death.

  • PDF

Changes of Ginsenosides and Physiochemical Properties in Ginseng by New 9 Repetitive Steaming and Drying Process (새로운 자동 구증구포방법에 의한 인삼사포닌의 변환 및 이화학적 특성)

  • Jin, Yan;Kim, Yeon-Ju;Jeon, Ji-Na;Wang, Chao;Min, Jin-Woo;Jung, Sun-Young;Yang, Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.473-481
    • /
    • 2012
  • This study was conducted to investigate the contents of ginsenosides and physiochemical properties of Panax ginseng after 9 times steaming and drying treatment by using the new auto steamer which is more fast and simple than previous report. In the process of steaming and drying, the content of six major ginsenosides such as Rg1, Re, Rb1, Rc, Rb2 and Rd were gradually decreased. On the other hand, the content of seven minor ginsenosides includes Rh1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5 were gradually increased. We observed the protopanxadiol ginsenosides such as Rb1, Rb2, Rc and Rd were converted into 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5; similarly protopanxatriol ginsenosides of Rg1 and Re were converted into Rh1, 20(S)-Rg2 and 20(R)-Rg2. Based on the result of fresh ginseng, the contents of reducing sugar, acidic polysaccharide and total phenolic compounds were gradually increased and reached to maximum at 7 times repetitive steaming process of the fresh ginseng. Whereas DPPH radical scavenging activities were gradually decreased to 68% at 7 times steaming. New auto 9 repetitive steaming and drying process has similar production with original methods, but content of benzo(a)pyrene were not almost detected comparatively taking less time. The present results suggested that this method is best for the development of value-added ginseng industry related products.

Comparative Studies of Panax ginseng and Panax quinquefolium on TCDD-induced Toxicity in Rats

  • Wee Jae Joon;Choi Seung Hoon;Park Kyeong Mee;Kyung Jong Su;Kang Dae Young;Song Tae Won
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.227-237
    • /
    • 2002
  • One prominent characteristic of2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) toxicity in rats is a reduction of body weight accompanied by an altered serum lipid profile such as hyperlipidemia. A single administration of TCDD (50 ug/kg) resulted in a decrease of body weight and increase of serum cholesterol in rats. TCDD-induced weight loss and serum cholesterol elevation was reduced in rats administered with water extract (100 mg/kg) or saponin fraction (40 mg/kg) of Panax ginseng C.A.Meyer. In contrast, the administration of Panax quinquefolium did not inhibit the TCDD-induced weight loss and serum cholesterol elevation. Histological examinations of liver and testis revealed the administration of saponin fraction of Panax ginseng attenuated the TCDD-induced hispathologicallesions whereas the administration of saponin fraction of Panax quinquefolium did not. High performance liquid chromatographic analysis demonstrated high percentiles of ginsenoside Rg and ginsenoside $Rh_1$ were evident in saponin fraction of Panax ginseng. Results indicate that the protective effects of Panax ginseng, not Panax quinquefolium, on the TCDD-induced toxicity might be resulted from different compositions of saponins in Panax ginseng.

  • PDF

Seven New Ginsenosides From a New Processed Ginseng

  • Park, Jeong-Hill;Kim, Jong-Moon;Han, Sang-Beom;Kim, Na-Young;Lee, Seung-Ki;Kim, Nak-Doo;Park, Man-Ki;Han, Byung-Hoon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.175-175
    • /
    • 1998
  • We reported a new processed ginseng with increased biological activities which is named as “sun ginseng (SG)”. Study on the saponin constituents of SG led to the isolation of seven new ginsenosides named as ginsenoside Rk$_1$, Rk$_2$, Rk$_3$, Rs$_4$, Rs$\_$5/, Rs$\_$6/ and Rs$\_$7/. Ginsenoside Rk$_1$, Rk$_2$ and Rk$_3$ were the Δ$\^$20(21),24(25)/-diene dammarane compounds, while ginsenoside Rs$_4$, Rs$\_$5/, Rs$\_$6/ and Rs$\_$7/ were mono-acetylated compounds. Many other ginsenosides which were reported as minor constituents of red ginseng were also isolated, which include 20(S)-Rg$_3$, 20(R)-Rg$_3$, Rg$\_$5/, Rg$\_$6/, F$_4$, Rh$_4$, 20(S)-Rs$_3$ and 20(R)-Rs$_3$. The major ginsenosides of SG were 20(S)-Rg$_3$, 20(R)-Rg$_3$, Rk$_1$ and Rg$\_$5/.

  • PDF

In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng

  • In, Gyo;Ahn, Nam-Geun;Bae, Bong-Seok;Lee, Myoung-Woo;Park, Hee-Won;Jang, Kyoung Hwa;Cho, Byung-Goo;Han, Chang Kyun;Park, Chae Kyu;Kwak, Yi-Seong
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.361-369
    • /
    • 2017
  • Background: The chemical constituents of Panax ginseng are changed by processing methods such as steaming or sun drying. In the present study, the chemical change of Panax ginseng induced by steaming was monitored in situ. Methods: Samples were separated from the same ginseng root by incision during the steaming process, for in situ monitoring. Sampling was sequentially performed in three stages; FG (fresh ginseng) ${\rightarrow}$ SG (steamed ginseng) ${\rightarrow}$ RG (red ginseng) and 60 samples were prepared and freeze dried. The samples were then analyzed to determine 43 constituents among three stages of P. ginseng. Results: The results showed that six malonyl-ginsenoside (Rg1, Rb1, Rb3, Rc, Rd, Rb2) and 15 amino acids were decreased in concentration during the steaming process. In contrast, ginsenoside-Rh1, 20(S)-Rg2, 20(S, R)-Rg3 and Maillard reaction product such as AF (arginine-fructose), AFG (arginine-fructose-glucose), and maltol were newly generated or their concentrations were increased. Conclusion: This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng).

Comparative Properties of Red Ginseng Prepared with Different Cultivation Years of Fresh Ginseng Produced in Punggi Region (풍기지역 연근별 수삼의 홍삼가공 특성 비교)

  • Kwon, Joong-Ho;Kim, Kyo-Youn;Kwon, Young-Ju;Kim, Mi-Yeung;Yoon, Sung-Ran;Chung, Hun-Sik;Lee, Ki-Teak;Cho, Soon-Heang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.1
    • /
    • pp.72-75
    • /
    • 2008
  • Quality properties of red ginseng prepared with different cultivation years of fresh ginseng produced in Punggi region were investigated. Fresh ginseng cultivated for 4, 5, or 6 years was steamed for 3.5 hr and dried for 24 hr at $60{\sim}65^{\circ}C$ and subsequently for $3{\sim}4$ days at $40^{\circ}C$ under commercial conditions. Compared to 6 years-old roots, the five years-old roots showed similar or some lower quality properties in terms of color, appearance, diameter, and inside quality, but higher ones in length and yield of prepared red ginseng. In particular, the levels of ginsenoside $Rg_3$ and $Rh_2$, which are known as specific components in red ginseng, were the highest in 5 years-old roots. The result shows that fresh ginseng of 5 years-old roots produced in Punggi region can be utilized as a raw material for the manufacture of high-quality red ginseng.

High Pressure Extraction Process of Low Quality Fresh Ginseng for Enhancing Anticancer Activities (파삼의 항암활성 증진이 가능한 고압 추출 공정)

  • Ha, Ji-Hye;Kim, Young;Jeong, Seung-Seop;Jeong, Myoung-Hoon;Jeong, Heon-Sang;Jeong, Jae-Hyun;Yu, Kwang-Wan;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.397-406
    • /
    • 2009
  • The low quality fresh ginseng was extracted by water at $80^{\circ}C$ and 240 bar for 20 min (HPE, High pressure extraction process). The cytotoxicity on human normal kidney cell (HEK293) and human normal lung cell (HEL299) of the extracts from HPE showed 28.43% and 21.78% lower than that from conventional water extraction at $100^{\circ}C$ in adding the maximum concentration of $1.0\;mg/m{\ell}$. The human breast carcinoma cell and lung adenocarcinoma cell growth were inhibited up to about 86%, in adding $1.0\;mg/m{\ell}$ of extracts from HPE. This values were 9-12% higher than those from conventional water extraction. On in vivo experiment using ICR mice, the variation of body weight of mice group treated fresh ginseng extracts from HPE of 100 mg/kg/day concentration was very lower than control and other group. The extracts from HPE was showed longer survival times as 35.65% than that of the control group, and showed the highest tumor inhibition activities compared with other group, which were 70.64% on Sarcoma-180 solid tumor cells. On the high performance liquid chromatogram (HPLC), amount of ginsenoside-$Rg_2$, $Rg_3$, $Rh_1$ and $Rh_2$ on fresh ginseng were increased up to 43-183% by HPE, compared with conventional water extracts. These data indicate that HPE definitely plays an important role in effectively extracting ginsenoside, which could result in improving anticancer activities. It can be concluded that low quality fresh ginseng associated with this process has more biologically compound and better anticancer activities than that from normal extraction process.

Hepatoprotective effect of ultrasonicated ginseng berry extract on a rat mild bile duct ligation model

  • Nam, Yoonjin;Ko, Sung Kwon;Sohn, Uy Dong
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.606-617
    • /
    • 2019
  • Background: The Panax ginseng berry extract (GBE) is well known to have an antidiabetic effect. The aim of this study is to evaluate and investigate the protective effect of ultrasonication-processed P. ginseng berry extract (UGBE) compared with GBE on liver fibrosis induced by mild bile duct ligation (MBDL) model in rats. After ultrasonication process, the composition ratio of ginsenoside in GBE was changed. The component ratio of ginsenosides Rh1, Rh4, Rg2, Rg3, Rk1, Rk3, and F4 in the extract was elevated. Methods: In this study, the protective effect of the newly developed UGBE was evaluated on hepatotoxicity and neuronal damage in MBDL model. Silymarin (150 mg/kg) was used for positive control. UGBE (100 mg/kg, 250 mg/kg, 500 mg/kg), GBE (250 mg/kg), and silymarin (150 mg/kg) were orally administered for 6 weeks after MBDL surgery. Results: The MBDL surgery induced severe hepatotoxicity that leads to liver inflammation in rats. Also, the serum ammonia level was increased by MBDL surgery. However, the liver dysfunction of MBDL surgery-operated rats was attenuated by UGBE treatment via myeloid differentiation factor 88-dependent Toll-like receptor 4 signaling pathways. Conclusion: UGBE has a protective effect on liver fibrosis induced by MBDL in rats through inhibition of the TLR4 signaling pathway in liver.