• Title/Summary/Keyword: Ginsenoside $Rf_{2}$

Search Result 133, Processing Time 0.024 seconds

Quantitative Analysis of Ginsenosides in Red Ginseng Extracted under Various Temperature and Time (홍삼의 추출 시간 및 온도에 따른 Ginsenosides 함량 비교분석)

  • Yang, Byung-Wook;Han, Sung-Tai;Ko, Sung-Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.4 s.147
    • /
    • pp.217-220
    • /
    • 2006
  • This study compared the contents of ginsenoside according to the extract conditions of red ginseng to provide basic information for developing functional food using red ginseng. According to the result, the content of crude saponin was highest in 72 hours of extraction at $82^{\circ}C$ (RG-823). The content of prosapogenin (ginsenoside $Rh_1,\;Rh_2,\;Rg_2,\;Rg_3$) was highest in 48 hours of extraction, and followed by 72 and 24 hours at $82^{\circ}C$. And at $93^{\circ}C$ the prosapogenin contents were highest in the order of 48 hours, and next in 24 and 72 hours. In addition, ginsenoside $Rb_1,\;Rb_2$ Rc and Re were not detected in 72 hours of extraction at $93^{\circ}C$ (RG-933) presumedly due to hydrolysis, but ginsenoside Rd, Rf and $Rg_1$ were detected as long as 72 hours of extraction. These results show that protopanaxatriol group is relatively more resistant to heat than protopanaxadiol group.

Study on biosynthesis of ginsenosides in the leaf of Panax ginseng by seasonal flux analysis

  • Kim, Dongmin;Han, Jaehong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.315-322
    • /
    • 2019
  • Seasonal ginsenoside flux in the leaves of 5-year-old Panax ginseng was analyzed from the field-grown ginseng, for the first time, to study possible biosynthesis and translocation of ginsenosides. The concentrations of nine major ginsenosides, Rg1, Re, Rh1, Rg2, R-Rh1, Rb1, Rc, Rb2, and Rd, were determined by UHPLC during the growth in between April and November. It was confirmed total ginsenoside content in the dried ginseng leaves was much higher than the roots by several folds whereas the composition of ginsenosides was different from the roots. The ginsenoside flux was affected by ginseng growth. It quickly increased to 10.99±0.15 (dry wt%) in April and dropped to 6.41±0.14% in May. Then, it slowly increased to 9.71±0.14% in August and maintained until October. Ginsenoside Re was most abundant in the leaf of P. ginseng, followed by Rd and Rg1. Ginsenosides Rf and Ro were not detected from the leaf. When compared to the previously reported root data, ginsenosides in the leaf appeared to be translocated to the root, especially in the early vegetative stage even though the metabolite translocated cannot be specified. The flux of ginsenoside R-Rh1 was similar to the other (20S)-PPT ginsenosides. When the compositional changes of each ginsenoside in the leaf was analyzed, complementary relationship was observed from ginsenoside Rg1 and Re, as well as from ginsenoside Rd and Rb1+Rc. Accordingly, ginsenoside Re in the leaf was proposed to be synthesized from ginsenoside Rg1. Similarly, ginsenosides Rb1 and Rc were proposed to be synthesized from Rd.

Ginsenosides Attenuate Formalin-Induced Pains Through Spinal and Supraspinal Sites

  • Yoon, So-Rah;Park, Seok;Jung, Se-Yeon;Kim, Seok-Chang;Ko, Sung-Ryong;Nam, Ki-Yeul;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.143-147
    • /
    • 2000
  • In previous studies we have demonstrated that several individual ginsenosides such as Rc, Rd, Re and Ri relieves formalin-induced pain following systemic treatment. But it is unknown where these single ginsenosides induce antinociception. We investigated the antinoiceptive effect of four individual ginsenosides on formalin-induced pain after intrathecal (i.t.), intracereventricular (i.c.v.), or subcutaneous (s.c.) administration using mice. We found that ginsenoside Rc, Rd, and Re except Rf attenuated both acute and tonic phase of pain. Ginsenoside Rf attenuated only tonic phase of pain after i.t. administration. The ED$\_$50/ was 1.0 (0.55∼l.75 mg/kg) for Rc, 1.15 (0.6∼2.25 mg/kg) for Rd, and 8.9 (3.9∼20.5 mg/kg) for Re in acute phase of pain. The ED$\_$50/ was 0.3 (0.1∼0.85 mg/kg) for Rc, 0.6 (0.35∼l.1 mg/kg) for Rd, 2.45 (1.25∼4.65 mg/kg) for Re, and 1.9 (1.5∼4.25 mg/kg) for Rf in tonic phase of pain. We also found that ginsenoside Rc, Rd, Re, and Rf after i.c.v. administration attenuated both acute and tonic phase of pain. The ED5o for acute phase of pain was 0.9 (0.55∼l.4mg/kg) for Rc, 0.9 (0.45∼1.7 mg/kg) for Rd, 0.93 (0.5∼l .75 mg/kg) for Re, and 1.85 (0.95∼3.5 mg/kg) for Rf. The ED$\_$50/ for tonic phase of pain was 0.7 (0.45∼1.05 mg/kg) for Rc,1.25 (0.7∼2.2 mg/kg) for Rd, 0.85 (0.45∼1.6 mg/kg) for Re, and 0.8 (0.4∼1.45 mg/kg) for Rf. Thus, the order of the analgesic potency was Rc$\geq$Rd>Re>Rf in both i.t. and i.c.v. administration routes. However, s.c. pretreatment of four ginsenosides did not reduce formalin-induced pain. These results suggest that analgesic effect of ginsenosides is achieved through spinal or supraspinal site(s) in formalin test.

  • PDF

Identification of NMR Data for ginsenoside Rg1 (Ginsenoside Rg1의 NMR 데이터 동정)

  • Lee, Dae-Young;Cho, Jin-Gyeong;Lee, Min-Kyung;Lee, Jae-Woong;Park, Hee-Jeong;Lee, Youn-Hyung;Yang, Deok-Chun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.291-299
    • /
    • 2008
  • The fresh ginseng roots were extracted in aqueous methanol (MeOH), and the obtained extracts were partitioned using ethyl acetate (EtOA), n-butanol (n-BuOH), and water, successively. The repeated silica gel column chromatography for n-BuOH fraction afforded a purified ginsenoside $Rg_1$. The physico-chemical, spectroscopic and chromatographic data of ginsenoside $Rg_1$, such as crystallization characteristics, melting point, specific rotation, infrared spectrometry (IR) data, fast atom bombardment/mass spectrometry (FAB/MS) data, nuclear magnetic resonance (NMR) data, retention factor (Rf) in thin layer chromatography (TLC) experiment, and retention time (r.t.) in HPLC analysis, were measured and compared with those reported in literatures. Especially, the previous literatures reported different data for ginsenoside $Rg_1$ in the $^{1}H-$ and $^{13}C$-NMR experiments. This paper gives the exactly assigned NMR data through 2D-NMR experiments, such as $^{1}H-^{1}H$ correlation spectroscopy (COSY), hetero nuclear single quantum correlation (HSQC), and hetero nuclear multiple bond connectivity (HMBC).

Thermal Conversion Pathways of Ginsenosides in Red Ginseng Processing

  • Lee, Sang Myung
    • Natural Product Sciences
    • /
    • v.20 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • According to the results of my study on the chromatographic analysis of fresh ginseng (Panax ginseng C. A. Meyer) roots, most of the contents of protopanxadiol ginsenosides $Rb_1$, Rc, $Rb_2$, and Rd are derived from the corresponding malonyl ginsenosides in fresh ginseng by a heat process. Also, I confirmed that acetyl ginsenosides are naturally occurring constituents in fresh ginseng, not decarboxylates from malonyl ginsenosides. Seven neutral ginsenosides $Rg_1$, Re, Rf, Rc, $Rb_1$, $Rb_2$, and Rd were transformed to specific conversions in red ginseng preparation conditions. The conversion paths progress by three rules concluded from my study. These conversion rules are I: the ether bond is stable at positions 3 and 6 in the dammarane skeleton, II: the ether bond between sugars is stable in glycosides, and III: the ether bond to glycosides is unstable at position 20 in the dammarane skeleton.

Identification of Ginseng Sapogenin and Quantitative Determination of $Ginsenoside-Rb_1$ from Crude Drug Preparation Containing Bupleuri Radix (시호(柴胡)함유 생약제제(生藥製劑)중 인삼(人蔘) Sapogenin의 확인 및 $Ginsenoside-Rb_1$의 분리 정량)

  • Choi, Kang-Ju;Ko, Sung-Ryong;Jeon, Byeong-Seon;Sung, Hyun-Soon
    • Korean Journal of Pharmacognosy
    • /
    • v.20 no.3
    • /
    • pp.175-179
    • /
    • 1989
  • From crude drug preparation(Soshiho-Tang) ginseng sapogenins were identified by TLC and $ginsenoside-Rb_1$ was determined quantitatively by HPLC. Panaxadiol, pandaxatriol, acid-hydrolysates of ginseng saponin, were identified by TLC with benzene/acetone(4 : 1, v/v). Rf values of which were measured as 0.26 and 0.14, respectively. The content of $ginsenoside-Rb_1$ was determined by HPLC on $Lichrosorb-NH_2$ column with $CH_3CN/H_2O/n-BuOH$(80 : 20 : 10, v/v). Its recovery rate in the extract granules, was as relatively low as $19.8{\pm}1.4%$ compared to the content in raw red ginseng.

  • PDF

Change of Ginsenosides and Free Sugars in Seeds During Stratification and Seedling During Early Growth Stage of Panax ginseng (인삼의 종자개갑시와 묘생육초기의 Ginsenosides 및 유리당의 변화)

  • 박귀희;이미경;박훈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.286-292
    • /
    • 1986
  • For the elucidation of saponin synthesis during ontogeny changes of ginsenosides and free sugars in seeds during stratification and seedlings in early growth stage were investigated with high performance liquid chrom-atography. Embryo plus endosperm at 40-day stratification showed 80% decrease of total saponin, disappear-ance of Rc, Rb$_2$ and Rb$_1$ and appearance of Rg$_3$ (probable) and 20-Glc-Rf (probable). Leaf ginsenoside F$_3$ was found not in fruit plup but seed and decreased during stratification. Both decomposition and synthesis of saponin seemed to occure during stratification. Ginsenosides in endosperm and embryo might be originated from fruit pulp by penetration. In seedling saponin appeared first in shoot and in root about one month later. Ginsenoside Rc, Rb$_2$, Rb$_1$ appeared in root at the last investigation (June 30) indicating normal saponin synthetic capacity of root. Saponin synthetic rate was twice in leaf than in root. Leaf ginsenoside F$_3$ was found in seedling root. Root saponin Rg$_3$ and 20-Glc-Rf were found in leaf and stem in seedling and decreased with growth suggesting that rate saponin is not such in certain growth stage. Total saponin content was negatively correlated with PT/PD in seeds and arial parts of seedling due to greater change of PD. than PT. Seed at 70days stratification showed high sucrose content. In seedling glucose was main sugar in stem all the while and sucrose in root at early stage while glucose, fructose and sucrose were found in leaf.

  • PDF

Ginsenoside Production and Morphological Characterization of Wild Ginseng (Panax ginseng Meyer) Mutant Lines Induced by γ-irradiation (60Co) of Adventitious Roots

  • Zhang, Jun-Ying;Bae, Tae-Woong;Boo, Kyung-Hwan;Sun, Hyeon-Jin;Song, In-Ja;Pham, Chi-Hoa;Ganesan, Markkandan;Yang, Dae-Hwa;Kang, Hong-Gyu;Ko, Suk-Min;Riu, Key-Zung;Lim, Pyung-Ok;Lee, Hyo-Yeon
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.283-293
    • /
    • 2011
  • With the purpose of improving ginsenoside content in adventitious root cultures of Korean wild ginseng (Panax ginseng Meyer), the roots were treated with different dosages of ${\gamma}$-ray (5, 10, 25, 50, 75, 100, and 200 Gy). The growth of adventitious roots was inhibited at over 100 Gy. The irradiated adventitious roots showed significant variation in the morphological parameters and crude saponin content at 50 to100 Gy. Therefore, four mutant cell lines out of the propagation of 35 cell lines treated with 50 Gy and 100 Gy were selected on the basis of phenotypic morphology and crude saponin contents relative to the wild type control. The contents of 7 major ginsenosides ($Rg_1$, Re, $Rb_1$, $Rb_2$, Rc, Rf, and Rd) were determined for cell lines 1 and 3 from 100 Gy and lines 2 and 4 from 50 Gy treatments. Cell line 2 showed more secondary roots, longer length and superior growth rate than the root controls in flasks and bioreactors. Cell line 1 showed larger average diameter and the growth rate in the bioreactor was comparable with that of the control but greater in the flask cultured roots. Cell lines 1 and 2, especially the former, showed much more ginsenoside contents than the control in flasks and bioreactors. Therefore, we chose cell line 1 for further study of ginsenoside contents. The crude saponin content of line 1 in flask and bioreactor cultures increased by 1.4 and 1.8-fold, respectively, compared to the control. Total contents of 7 ginsenoside types ($Rg_1$, Re, $Rb_1$, $Rb_2$, Rc, Rf, and Rd) increased by 1.8 and 2.3-fold, respectively compared to the control. Crude saponin and ginsenoside contents in the bioreactor culture increased by about 1.4-fold compared to that the flask culture.

Determination of Ginseng Saponins by Reversed-Phase High Performance Liquid Chromatography (역상 고속액체크로마토그라피를 이용한 홍삼 사포닌의 정량)

  • Kim, Cheon-Suk;Kim, Se-Bong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.1
    • /
    • pp.21-25
    • /
    • 2001
  • Major saponins in ginseng were analysed using reverse phase high performance liquid chromatography with binary mobile phase gradient control system instead of normal phase column. The optimum condition were as following : reverse phase column; ${\mu}{\beta}ondapak\;C_{18}$ column (Waters, $3.9mm{\times}300\;mm,\;5{\mu}m$), methyl cyanaide/water binary mobile phase gradient control system, solvent flow rate; 1.5 ml/min, and UV($203{\mu}m$ ) detector. The complete separation of ginsenoside $Rb_1,\;Rb_2,\;Rc,\;Rd,\;Re,\;Rf\;and\;Rg_1$ was achieved within 55 min. The Regression coefficients of the calibration curves for seven ginsenosides were 0.99.

  • PDF

Isolation of Ginsenoside${-Rh}_1$ and ${-Rh}_2$ by High Performance Liquid Chromatography (고속액체(高速液體) 크로마토그래피에 의(依)한 Ginsenoside ${-Rh}_1$${-Rh}_2$ 의 분리(分離))

  • Choi, Jin-Ho;Kim, Woo-Jung;Hong, Soon-Keun;Oh, Sung-Ki;Oura, Hikokichi
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.57-66
    • /
    • 1981
  • An effective method for isolation of the major components of ginseng saponin such as $ginsenoside-Rb_{1},\;-Rb_2,$ -Rc, -Rd, -Re and $-Rg_1$, and the minor components such as ginsenoside-Rf, $-Rg_2,\;and-Rh_1$, was developed and reported in previous papers (J. Korean Agr. Chem. Soc., 23(4), 199 and 206(1980) The conditions and procedures used for isolation and identification for ginsenosides described in the previous papers were not sufficient enough for clean separation of minor components, $ginsenoside-Rh_1,\;and-Rh_2$. In this work, modifications in extraction method and in mobile phase for HPLC were attempted. It was found that application of ethyl acetate extraction at $60^{\circ}C$ for 3 hr on crude saponin resulted in a removal of diol group saponin from crude saponin which made it possible for using higher portion of acetonitrile in mobile phase. The mixed solvents of acetonitrile : water (92 : 8 and 94 : 6) gave excellent resolution of $ginsenoside-Rh_1\;and\;-Rh_2$.

  • PDF