• Title/Summary/Keyword: Gigaspora margarita

Search Result 13, Processing Time 0.026 seconds

Hyphal growth, auxiliary cell development and hyphal healing process of arbuscular mycorrhizal fungi, Gigaspora and Scutellospora genera (Gigaspora 속(屬)과 Scutellospora 속(屬) 아버스큘 균근균(菌根菌)의 균사생장(菌絲生長), 보조세포 발달(發達), 손상된 균사재생(菌絲再生)의 과정(過程))

  • Ka, Kang-Hyeon;Koo, Chang-Duck;Yi, Chang-Keun
    • The Korean Journal of Mycology
    • /
    • v.22 no.1
    • /
    • pp.36-45
    • /
    • 1994
  • Hyphal growth, auxiliary cell development and hyphal healing process of Gigaspora margarita, Scutellospora heterogama and S. verrucosa were investigated. The germinated hyphae from spores grew on the surface and the bottom of agar media. The hyphal growth on the surface stopped 19 to 23 days and the growth on the bottom 40 to 51 days after spore germination. Auxiliary cells began to develop 7 to 9 days after the spore germination in the media. The auxiliary cells almost always developed on the tip of a hypha branched from a secondary hypha. The cytoplasmic streaming rates in the hyphae of G. margarita and S. heterogama were $2.7\;to\;3.3\;{\mu}m/s\;and\;3.8\;to\;4.3\;{\mu}m/s$, respectively. The hyphae artificially cut were healed by connecting with a hypha grown from the spore-side hypha. We may suggest that the wound healing process of hyphae should be one of the characteristics obtained from symbiotic relationship between host plants and arbuscular mycorrhizal fungi for a long period of time.

  • PDF

Diversity of Arbuscular Mycorrhizal Fungi of Woody Plants in Mt. Munan (문안산의 목본식물과 공생하는 수지상균근균의 다양성)

  • Park, Sang-Hee;Eo, Ju-Kyeong;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • This study was conducted to reveal the diversity of arbuscular mycorrhizal fungi (AMF) in Mt. Munan, based on the morphological and molecular characters. Soil and root samples were collected from the rhizosphere of host plants including Lindera obtusiloba, Stephanandra incisa, Styrax obassis and Symplocos sawafutagi and AMF were trap-cultured with Sorghum bicolor as a host plant in a greenhouse. The spores were extracted from the cultured soils and five species were identified using morphological and molecular characteristics; Acaulospora longula, A. mellea, Ambispora leptoticha, Gigaspora margarita and Paraglomus occultum. The distribution of AMF showed different trends according to host plants. The dominant AMF species were A. longula in L. obtusiloba, A. leptoticha in S. incisa, S. obassis and S. sawafutagi.

Arbuscular Mycorrhizal Fungus Inoculation Effect on Korean Ash Tree Seedlings Differs Depending upon Fungal Species and Soil Conditions (아버스큘 균근균(菌根菌) 접종(接種)이 균종(菌種)과 토양상태(土壤狀態)에 따라 물푸레나무 묘목(苗木)의 생장(生長)에 미치는 영향(影響))

  • Koo, Chang-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.466-475
    • /
    • 1997
  • I examined arbuscular mycorrhizal(AM) fungus inoculation effects on the seedling growth of Korean ash tree(Fraxinus rhynchophylla Hance), which distributes in fertile mesic soils, under a seven-day watering cycle of water stress and compost-added fertile conditions. Three Korea-native AM fungi were inoculated : an unidentified Glomus species, Gigaspora margarita Becker & Hall and Scutellospora heterogama(Nicol. & Gerd) Walker & Sanders from disturbed forest soils. The effect of AM fungus inoculation on the seedling varied depending upon fungal species and soil conditions. AM formation was 27 to 65% by the Glomus without forming spores, 47 to 74% with about 10 spores per 20g soil by G. margarita and about 65% with 35 spores by S. heterogama. The soil conditions did not affect either AM or spore formation. The Glomus inoculation increased shoot N and P concentrations, but did not affect seedling growth. G. margarita increased shoot N and P, irrespective of soil conditions, in general, but S. heterogama increased N under water stress and Pin the control soil only. These two fungi significantly increased seedling growth in both control and water stress soils. Compost addition increased the growth of non-mycorrhizal seedlings and offset AM fungus inoculation effects. The relative field mycorrhizal dependency(RFMD) of the seedlings was significant only in control and water stress soils by over 40% in G. margarita or S. heterogama AM plants. Under water stress RFMD was the most evident in S. heterogama AM plants. I conclude that some AM fungi such as G, margarita and S. heterogama can broaden the niche of Korean ash seedlings to a water stress or nutrient poor site but less likely to more fertile sites.

  • PDF

Density of Arbuscular Mycorrhizal Fungi and Chemical Properties of Soils in Seasoning Crop Cultivation (조미채소 재배지의 토양 화학성에 따른 균근균 분포특성에 관한 연구)

  • Sohn, Bo-Kyoon;Kim, Hong-Lim;Kim, Young-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.145-153
    • /
    • 2003
  • The average values of soil chemical concentration in investigation regions were pH 5.93, $25.9g\;kg^{-1}$ of organic matter, $742mg\;kg^{-1}$ of available phosphate and $44.7mg\;kg^{-1}$ of nitrate nitrogen. The number of mycorrhizal spores analysed from 1g of soil sample was 12.1 for onion, 11.7 for garlic and 10.1 for red pepper. In fractionation of soil texture, clay and silty clay showed more than 15 spores per 1g of soil. There was no relationship between spore density and soil nutrition of pH, organic matter, $NO_3-N$ and Av. $P_2O_5$. However, the number of spores was constant level independent on the concentration of soil nutrition. Spores identified in this study are as follows: Glomus clarum, Glomus intraradices, Glomus etunicatum, Gigaspora rosea and Gigaspora margarita.

Vesicular-Arbuscular Mycorrhizal Fungi Found in the Soils around the Roots of the Leguminous Plants (콩과(科) 식물(植物) 주변(周邊)의 토양(土壤)에서 발견(發見)되는 VA-mycorrhizae)

  • Kim, Jun-Tae;Kim, Chong-Kyun
    • The Korean Journal of Mycology
    • /
    • v.20 no.3
    • /
    • pp.171-182
    • /
    • 1992
  • Ten species of the leguminous plants were collected from the soils around Kongiu National University $(127^{\circ}\;08'\;41"\;E,\;36^{\circ}\;28'\;04"\;N)$. All of them were infected with VA-mycorrhizae in the root tissues, and twelve azygospores or chlamydospores of VA-mycorrhizal fungi were found and identified (twelve species of four genera); Acaulospora denticulata, A. scrobiculata, Gigaspora margarita, Glomus australe, Gl. constrictum, Gl. convolutum, Gl. diaphanum, Gl. flavisporum, Gl. glomerulatum, Gl. manihotis, Gl. tortuosum, Scleroystis microcarpus. Seven among them were not reported in Korea yet (seven species of three genera); A. denticulata, Gl. australe, Gl. constrictum, Gl. convolutum, Gl. diaphanum, Gl. flavisporum, S. microcarpus.

  • PDF

Density of Arbuscular mycorrhizal spore of plastic film house soil in Yeongnam area and characterestics of AMF in vitro (영남지역 시설재배지에 분포하는 Arbuscular 균근균의 포자 밀도 및 기내조건에서의 포자발아와 균사생장 특성)

  • Park, Hyang-Mee;Nam, Min-Hee;Kang, Hang-Won;Lee, Jae-Saeng;Ko, Jee-Yeon;Kang, Ui-Gum;Park, Kyeong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • This study was conducted to obtain the basic data on agricultural use of arbuscular mycorrhizal fungi(AMF) in salt accumulated plastic film house soil by evaluating the density of AMF spores in plastic film house in Yeong Nam area and surface sterility condition, germination rate of AMF spores, and hyphal growth in vitro. The density of AMF spores in plastic film house soils was highest in the site of water melon, and those of cucumber, melon, hot pepper sites were followed in order. The number of AMF was in the range of 101-207 per 100 g dry soil. With decreasing the ratio of bacteria to fungi(B/F), the population density of AMF was increased, and available $P_2O_5$ content of soil was significantly correlated to the population densities of AMF($r=0.416^*$). The surface sterility rate and spore germination of AMF isolated in plastic film house soil were more than 50% in 2% chloramin T and 2% chloramin T + antibiotic and 0.5% NaOCl treatments. The germination rate of Gigaspora margarita in the range of initial pH 5~9 of the medium was more than 56%. Hyphal growth was increased as pH of the medium increased. However the germination rate of Acaulospora spinosa was highest in the medium of pH 9, and hyphal growth in vitro was poor and not related to pH of the medium.

  • PDF

Endomycorrhizal Fungi Found from the Soils of the Communities of Persicaria thunbergii H. Gross (고마리 군락의 토양에서 발견된 내생균근)

  • Eum, Ahn-Heum;Lee, Sang-Sun
    • The Korean Journal of Mycology
    • /
    • v.18 no.1
    • /
    • pp.26-41
    • /
    • 1990
  • Eleven species of endomycorrhizal fungi were isolated from the soils in the communities of Persicaria thunbergii: A. bireticulata, A. scrobiculata, Gi. decipiens, Gi. gigantea, Gi. margarita, Gl. albidum, Gl. manihotis, Gl. pulvinatum, Sc. erythropa and Sc. gregaria.

  • PDF

Diversity of Arbuscular Mycorrhizal Fungi Isolated from Dokdo Island (독도의 식물 근권에 분포하는 수지상균근균의 다양성)

  • Eo, Ju-Kyeong;Park, Hyeok;Choi, Seung-Se;Shin, Hyun-Chul;Song, Se-Kyu;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.45 no.4
    • /
    • pp.284-291
    • /
    • 2017
  • In this study, arbuscular mycorrhizal fungi (AMF) were isolated from rhizosphere soils of Dokdo Island. Based on their morphological characteristics and 18S rDNA sequence analysis, eight species belonging to seven genera were identified: Acaulospora longula, A. mellea, Claroideoglomus claroideum, Diversispora aurantia, Funneliformis mosseae, Gigaspora margarita, Paraglomus occultum, and Septoglomus constrictum. No differences were noted between the AMF isolated from Dongdo and Seodo in Dokdo Island, and all of these AMF have been reported previously in Korea. These results could be useful for diversity and functional analyses of AMF in Korea.

Root Age-Dependent Changes in Arbuscular Mycorrhizal Fungal Communities Colonizing Roots of Panax ginseng

  • Kil, Yi-Jong;Eo, Ju-Kyeong;Lee, Eun-Hwa;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.416-421
    • /
    • 2014
  • In this study, we examined arbuscular mycorrhizal fungal (AMF) community structure colonizing field-cultivated ginseng roots according of different ages, such as 1- to 5-year-old plant, collected from Geumsan-gun, Korea. A total of seven AMF species namely, Funnelliformis caledonium, F. moseae, Gigaspora margarita, Paraglomus laccatum, P. occultum, Rhizophagus irregularis, and Scutellospora heterogama were identified from the roots using cloning, PCR-restriction fragment length polymorphism and sequence analysis of the large subunit region in rDNA. AMF species diversity in the ginseng roots decreased with the increase in root age because of the decreased species evenness. In addition, the community structures of AMF in the roots became more uniform. These results suggest that the age of ginseng affects mycorrhizal colonization and its community structure.

Effect of Organic Farming on Spore Diversity of Arbuscular Mycorrhizal Fungi and Glomalin in Soil

  • Lee, Ji-Eun;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.37 no.4
    • /
    • pp.272-276
    • /
    • 2009
  • In this study, eight soil samples were collected from organic and conventional farms in a central area of South Korea. Spore communities of arbuscular mycorrhizal fungi (AMF) and glomalin, a glycoprotein produced by AMF, were analyzed. Spores of Glomus clarum, G. etunicatum, G. mosseae, G. sp., Acaulospora longula, A. spinosa, Gigaspora margarita, and Paraglomus occultum were identified at the study sites, based on morphological and molecular characteristics. While Acaulospora longula was the most dominant species in soils at organic farms, Paraglomus occultum was the most dominant species in soils at conventional farms. Species diversity and species number in AMF communities found in soils from organic farms were significantly higher than in soils from conventional farms. Glomalin was also extracted from soil samples collected at organic and conventional farms and was analyzed using both Bradford and enzyme-linked immunosorbent assays. The glomalin content in soils from organic farms was significantly higher than in soils from conventional farms. These results indicate that agricultural practices significantly affect AMF abundance and community structure.