• Title/Summary/Keyword: Gibbs 자유에너지

Search Result 61, Processing Time 0.025 seconds

Study on the Melting Point of Ar by Molecular Dynamic Simulation (Ar의 녹는점에 관한 분자동역학적 고찰)

  • Chung, Jae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.883-888
    • /
    • 2007
  • As a starting point of investigating what molecular dynamic simulations can reveal about the nature of atomic level of heating and cooling process, argon described by the LJ potential is considered. Stepwise heating and cooling of constant rates are simulated in the NPT (constant number, pressure and temperature) ensemble. Hysteresis is found due to the superheating and supercooling. Drastic change of volume and energy is involved with phase change, but the melting point can not be obtained by simply observing the changes of these quantities. Since liquid and solid phases can co-exist at the same temperature, Gibbs free energy should be calculated to find the temperature where the Gibbs free energy of liquid is equal to that of the solid since the equilibrium state is the state of minimum Gibbs free energy. The obtained melting temperature, $T^*=0.685$, is close to that of the experiment with only 2% error.

hermodynamic Study on the Solubilization of Aniline by Cationic Surfactants (DTAB, TTAB, and CTAB) (양이온성 계면활성제 (DTAB, TTAB 및 CTAB)에 의한 아닐린의 가용화에 대한 열역학적 고찰)

  • Lee, Dong-Cheol;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1143-1152
    • /
    • 2019
  • In order to study the solubilization of aniline by cationic surfactants (DTAB, TTAB and CTAB), the solubilization constant (Ks) and thermodynamic functions were measured and calculated by using the UV-Vis method. The solubilization constants of aniline with the change of temperature were measured, and the effects of addition of ionic salts and organics on the solubilization constants were investigated. These effects of additives and temperature changes were compared and analyzed for each type of surfactant, and the solubilization of aniline was analyzed microscopically by comparing and evaluating the thermodynamic functions obtained from the solubilization constants. As a result, the Gibbs free energy and enthalpy changes were both negative and the entropy changes were positive within the measured range for the solubilization of aniline by cationic surfactants. The solubilization constant value decreased with increasing temperature and increased with increasing carbon chain length of the surfactant. As the concentration of ionic salts increased, the Gibbs free energy change increased at first and then decreased. In n-butanol solution, the Gibbs free energy change tended to increase continuously with increasing the concentration of n-butanol.

A study on the Gasifier Modeling using a Chemical Equilibrium (화학평형을 이용한 가스화기 모델링에 관한 연구)

  • 정근모;임태훈;오인환;박명호
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.276-284
    • /
    • 1993
  • This study is to obtain some basic data which are prerequisite for the conceptual design of gasification process based on entrained-bed type gasifier. The Gibbs free energy minimization method is used to analyze the chemical equilibrium in the gasifier. The modeling results which consider the conventional mass balance and heat balance are compared with the experimental data published by Electric Power Research Institute. The analysis shows that the reaction in a entrained-bed gasifier is influenced mainly by the amount of oxidant, by the temperature of gasifier and by the type of coals.

  • PDF

Study on Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Murexide by Activated Carbon (입상 활성탄에 의한 Murexide의 흡착 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 2019
  • The equilibrium, kinetic and thermodynamic parameters of adsorption of murexide by granular activated carbon were investigated. The experiment was carried out by batch experiment with the variables of the amount of the adsorbent, the initial concentration of the dye, the contact time and the temperature. The isothermal adsorption equilibrium was best applied to the Freundlich equation in the range of 293 ~ 313 K. From the separation factor (${\beta}$) of Freundlich equation, it was found that adsorption of murexide by granular activated carbon could be the appropriate treatment method. The adsorption energy (E) obtained from the Dubinin- Radushkevich equation shows that the adsorption process is a physical adsorption process. From the kinetic analysis of the adsorption process, pseudo second order model is more consistent than pseudo first order model. It was found that the adsorption process proceeded to a spontaneous process and an endothermic process through Gibbs free energy change ($-0.1096{\sim}-10.5348kJ\;mol^{-1}$) and enthalpy change ($+151.29kJ\;mol^{-1}$). In addition, since the Gibbs free energy change decreased with increasing temperature, adsorption reaction of murexide by granular activated carbon increased spontaneously with increasing temperature. The entropy change ($147.62J\;mol^{-1}\;K^{-1}$) represented the increasing of randomness at the solid-solution interface during the adsorption reaction of murexide by activated carbon.

Combustion Analysis Program of Liquid Propellant Rocket Engine (액체추진제 로켓엔진의 연소해석 프로그램)

  • Jung, Tae-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.157-161
    • /
    • 2008
  • This study introduce a newly developed program to calculate the combustion process of combustion chamber and gas generator of liquid rocket engine by use of Gibbs free energy minimization method based on chemical equilibrium. The simulation results of the new program and CEA code of NASA were compared and showed good agreement, thus proving the validity of the newly developed in-house program for combustion analysis.

  • PDF

Study on Equillibrium, Kinetic, Thermodynamic Parameters for Adsorption of Brilliant Green by Zeolite (제올라이트에 의한 Brilliant Green의 흡착에 대한 평형, 동역학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.112-118
    • /
    • 2018
  • Adsorption equilibrium, kinetic and thermodynamic parameters of a brilliant green from aqueous solutions at various initial dye concentration (10~30 mg/L), contact time (1~24 h) and temperature (298~318 K) on zeolite were studied in a batch mode operation. The equilibrium adsorption values were analyzed by Langmuir, Freundlich and Dubinin-Radushkevich model. The results indicate that Langmuir and Freundlich model provides the best correlation of the experimental data. Base on the estimated values of Langmuir dimensionless separation factor ($R_L=0.041{\sim}0.057$) and Freundlich constant (1/n=0.30~0.47), this process could be employed as effective treatment method. calculated values of adsorption energy by Dubinin-Radushkevich model were 1.564~1.857 kJ/mol corresponding to physical adsorption. The adsorption kinetics of brilliant green were best described by the pseudo second-order rate model and followed by intraparticle diffusion model. Thermodynamic parameters such as activation energy, free energy, enthalpy and entropy were calculated to estimate nature of adsorption. negative Gibbs free energy (-10.3~-11.4 kJ/mol), positive enthalpy change (49.48 kJ/mol) and Arrehenius activation energy (27.05 kJ/mol) indicates that the adsorption is spontaneous, endothermic and physical adsorption process, respectively.

Partial Miscibilities in Binary Solutions with Two Kinds of Specific Interactions (두 종류의 특정상호작용을 갖는 이성분 용액의 부분 혼합도)

  • Jung, Hae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.2
    • /
    • pp.111-117
    • /
    • 2016
  • In this article, new Gibbs free energy of mixing is derived when there are specific interactions between solvent-solute molecules and between solute-solute molecules in binary solutions. It is asssumed that a probability of specific interactions satisfies a binomial distribution. Using this Gibbs free energy of mixing, we investigate possible types of partial miscibilities and show that Ω-shaped temperature-composition phase diagrams can exist. We calculate Ω-shaped temperature-composition phase diagram of water-2-butanol system and compare that with result calculated by the method of Hino5 et al. and the experimental data.

Equilibrium, Kinetics and Thermodynamic Parameters Studies on Metanil Yellow Dye Adsorption by Granular Activated Carbon (입상활성탄에 의한 메타닐 옐로우 염료의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.96-102
    • /
    • 2014
  • Adsorption of metanil yellow onto granular activated carbon were studied in a batch system. Various operation parameters such as adsorbent dosage, pH, initial concentration, contact time and temperature were optimized. Experimental equilibrium adsorption data were analyzed by Langmuir and Freundlich adsorption isotherm. The equilibrium process was described well by Freundlich isotherm model. From determined separation factor (1/n), adsorption of metanil yellow by granular activated carbon could be employed as effective treatment method. By analysis of kinetic experimental data, the adsorption process were found to confirm to the pseudo second order model with good correlation and the adsorption rate constant ($k^2$) decreased with increasing initial concentration. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The activation energy was determined as 23.90 kJ/mol. It was found that the adsortpion of metanil yellow on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G=-2.16{\sim}-6.55kJ/mol$) and the positive enthalpy change (${\Delta}H=+23.29kJ/mol$) indicated the spontaneous and endothermic nature of the adsorption process, respectively.

Effect of NaCl, n-Butanol, and Temperature on the Micellization of Ammonium Cationic Surfactants (DTAB, TTAB, and CTAB) in Aniline Solution (아닐린 수용액에서 암모늄형 양이온성계면활성제 (DTAB, TTAB, 및 CTAB)의 미셀화에 미치는 염, n-부탄올 및 온도의 효과)

  • Lee, Dong-Cheol;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.407-416
    • /
    • 2019
  • The criticical micelle concentration (CMC) was measured by using the UV-Vis method for the micellization of the ammonium type cationic surfactants (DTAB, TTAB, and CTAB) in the aqueous aniline solution. The enthalpy change (${\Delta}H^0$) and entropy change (${\Delta}S^0$) were calculated from the dependence of Gibbs free energy change (${\Delta}G^0$) on the temperature for micellization of the cationic surfactants between 290K and 314K. The effects of n-butanol and sodium chloride on the micellization of cationic surfactants were measured and compared with the other thermodynamic functions. All the free energy changes (${\Delta}G^0$) of the micellization were negative, all the enthalpy change (${\Delta}H^0$) were negative, and all the entropy change (${\Delta}S^0$) were positive values, respectively. The micelle formation of cationic surfactant in aniline solution is a spontaneous exothermic reaction, and the iso-structural temperature calculated from the thermodynamic values show that enthalpy and entropy contribution to the micellization are almost the same for the micellization of cationic surfactants