• Title/Summary/Keyword: Geothermal heat exchanger

Search Result 201, Processing Time 0.028 seconds

A Study of Bubble Pump that is applied Solar Heating Water System (태양열 온수 시스템에 적용한 기포펌프의 동작특성에 관한 연구)

  • Park, G.T.;Song, L.;Shim, K.J.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.32-37
    • /
    • 2007
  • Regarding the need of energy in advance and the depletion of fossil fuel energy, all researches around the world now are trying to extract energy from many alternative sources especially the renewable one. Solar, ocean tidal, wind and geothermal energy are renewable energy fields which many researches are focused on. This paper explains about effort to replace electric pump used in solar water heating system by bubble pump. The utilization of bubble pump in this system is very efficient since it needs heat energy for its operation that can be obtained easily. In addition, it can also simplify the construction of the system. Bubble pump also functions as a controller to circulate water inside the system. Before the installation of bubble pump, the special quality and performance of bubble pump should be analyzed. The result got from the analysis could show the fluctuation of water flow rate occurred because it sensitively reacts to the heat quantity. Here the heat quantity is taken from the solar that, as we know, is not stable in a whole day. Problems often occurred are the flow rate in this system is very low moreover it could be stop if the pressure exceeds the limit.

  • PDF

A Study of Comparative Economic Evaluation for the System of Ground Source Heat Pump and District Heating and Cooling:Focusing on the Analysis of Operation Case (지열히트펌프와 지역냉난방 시스템의 운영사례를 중심으로 경제성 비교분석 연구)

  • Lee, Key Chang;Hong, Jun Hee;Kong, Hyoung Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.3
    • /
    • pp.103-109
    • /
    • 2016
  • The purpose of this study is to perform comparative economic evaluation for the systems of ground source heat pump (GSHP) and district heating and cooling (DHC) by focusing on the analysis of operation case of GSHP. The adapted research object is a public office building located in Seoul. The capacity of ground source pump is about 3,900 kW. Ground heat exchanger is closed loop type. The analysis period for life cycle cost is 30 years. Economic evaluation is assessed from the viewpoints of the following four parts: initial cost, energy cost, maintenance and replacement cost, and environment cost. The total life cycle cost of GSHP is approximately 8,447 million won. The cost of the DHC System is approximately 3,793 million won. The cost of the DHC is approximately 46% lower than GSHP system under the condition of current rate for GSHP and DHC.

Influences of Power Fluctuation on In-Situ Ground Thermal Response Testing (지중 열반응 현장시험에서 소비전력 변동의 영향)

  • Kim, Jin-Sang;Park, Keun-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.707-712
    • /
    • 2006
  • Knowing the ground thermal conductivity is very importnat in designing ground heat exchangers. Knowledge of the ground soil and rock composition information dose not guarantee the prediction of accurate thermal information. In Situ testing of ground heat exchangers is becoming popular. However, in situ testing are performed at construction sites in real life. Adequate data collection and analysis are not easy mainly due to poor power quality. Power fluctuation also causes the fluctuation of received data. The power quality must be maintained during the entire in situ testing processes. To accurately analyse the test data, the understanding of the response of the power fluctuation is essential. Testing under the power quality varied by tester is very difficult. Analyzing power variation by numerical simulation is a realistic option. By varying power in a sinosuidal manner, its effects on predicting thermal conductivity from thermal response plots made from the test data are examined.

  • PDF

Operation Characteristics of Open Type Geothermal Heat Pump (개방형 지열 히트펌프 시스템의 운전 특성)

  • Lim, Hyo-Jae;Kong, Hyoung-Jin;Song, Yoon-Seok;Park, Seong-Koo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.701-706
    • /
    • 2006
  • Groundwater heat pump systems are the oldest of the ground-souce systems and it has various type. Standing column well type are must be located in hard rock geology site and produce sufficient water for the conventional open loop system. These system are indirect type(the building circulating loop and ground water are intercept). Existence of the exchanger the foundation protect water quality to use of open loop. The design of open loop system are concern on the power requirements. An experimental study was analysis the extremely heating operation COP of ground water heat pump system. Operation efficiency of the 50RT systems shows that, COP $2.9{\sim}5.0$ in heating operation. And generally it shows 3.4.

  • PDF

Design Guidlines of Geothermal Heat Pump System Using Standing Column Well (수주지열정(SCW)을 이용한 천부지열 냉난방시스템 설계지침)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Hahn, Chan;Kim, Hyong-Soo;Jeon, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.607-613
    • /
    • 2006
  • For the reasonable use of low grade-shallow geothermal energy by Standing Column Well(SCW) system, the basic requirements are depth-wise increase of earth temperature like $2^{\circ}C$ per every 100m depth, sufficient amount of groundwater production being about 10 to 30% of the design flow rate of GSHP with good water quality and moderate temperature, and non-collapsing of borehole wall during reinjection of circulating water into the SCW. A closed loop type-vertical ground heat exchanger(GHEX) with $100{\sim}150m$ deep can supply geothermal energy of 2 to 3 RT but a SCW with $400{\sim}500m$ deep can provide $30{\sim}40RT$ being equivalent to 10 to 15 numbers of GHEX as well requires smaller space. Being considered as an alternative of vertical GHEX, many numbers of SCW have been widely constructed in whole country without any account for site specific hydrogeologic and geothermal characteristics. When those are designed and constructed under the base of insufficient knowledges of hydrgeothermal properties of the relevant specific site as our current situations, a bad reputation will be created and it will hamper a rational utilization of geothermal energy using SCW in the near future. This paper is prepared for providing a guideline of SCW design comportable to our hydrogeothermal system.

The Study on the Prediction of Underground Temperature in Changwon District (창원지역의 지중온도 예측에 관한 연구)

  • Cho, Sung Woo;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.3
    • /
    • pp.97-102
    • /
    • 2014
  • For an analysis of the horizontal-type geothermal heat exchanger system, an understanding of the ground temperature distributions is required in order to predict system performance. Because it is difficult to decide on the underground temperature due to the adjustment of its temperature cycle, numerous calculations are required in order to decide on the temperature cycle. In this paper, Buggs formula is utilized to decide a phase shift for outdoor temperature and ground surface temperature, which are obtained from Korea Meteorological Administration. Overall, the underground temperature distribution in the Changwon region is predicted as $10.5^{\circ}C{\sim}20.3^{\circ}C$ at a depth of 3 m.

Power Optimization of Organic Rankine-cycle System with Low-Temperature Heat Source Using HFC-134a (저온 열원 HFC-134a 유기랭킨사이클의 출력 극대화)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 2011
  • In this study, an organic Rankine-cycle system using HFC-134a, which is a power cycle corresponding to a low-temperature heat source, such as that for geothermal power generation, was investigated from the view point of power optimization. In contrast to conventional approaches, the heat transfer and pressure drop characteristics of the working fluid within the heat exchangers were taken into account by using a discretized heat exchanger model. The inlet flow rates and temperatures of both the heat source and the heat sink were fixed. The total heat transfer area was fixed, whereas the heat-exchanger areas of the evaporator and the condenser were allocated to maximize the power output. The power was optimized on the basis of three design parameters. The optimal combination of parameters that can maximize power output was determined on the basis of the results of the study. The results also indicate that the evaporation process has to be optimized to increase the power output.

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.

Optimum Pumping Rates of Ground-Water Heat Pump System Using Groundwater or Bank Infilterated Water (강변여과수와 천부 지하수를 이용하는 지하수 열펌프시스템의 적정유량)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Hahn, Chan;Jeon, Jae-Soo;Kim, Hyong-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.833-841
    • /
    • 2007
  • The groundwater heat pump system(GWHP) is one of the most efficient ground source heat pump system(GSHP) which uses low grade and shallow geothermal energy for cooling and heating purpose. The GWHP system shall be designed properly based on peak block load performance and optimum pumping rate of groundwater comparable to ground coupled heat pump system(GCHP). The optimum pumping rate depends on groundwater temperature at a specific site, size of plate heat exchanger, and total head loss occurred by whole system comprising pumps and pipings. The required optimum flow rates of the system per RT are ranged from 3.8 to 9.8lpm being less than the typical building loop flow of 9.5 to 11.4lpm.

Sizing of Vertical Borehole Heat Exchangers using TRNOPT (TRNOPT를 이용한 수직 지중열교환기 길이 산정 방법에 관한 연구)

  • Park, Seung-Hoon;Lee, Hyun-Soo;Jang, Young-Sung;Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.402-407
    • /
    • 2016
  • Ground-coupled heat pump systems have been widely used, as they are regarded as a renewable energy source and ensure a high annual efficiency. Among the system components, borehole heat exchangers (BHE) play an important role in decreasing the entering water temperature (EWT) to heat pumps in the cooling season, and consequently improve the COP. The optimal sizing of the BHEs is crucial for a successful project. Other than the existing sizing methods, a simulation-based design tool is more applicable for modern complex geothermal systems, and it may also be useful since design and engineering works operate on the same platform. A simulation-based sizing method is proposed in this study using the well-known Duct STorage (DST) model in Trnsys. TRNOPT, the Trnsys optimization tool, is used to search for an optimal value of the length of BHEs under given ground loads and ground properties. The result shows that a maximum EWT of BHEs during a design period (10 years) successfully approaches the design EWT while providing an optimal BHE length. Compared to the existing design tool, very similar lengths are calculated by both methods with a small error of 1.07%.