• Title/Summary/Keyword: Geomorphic Analysis

Search Result 98, Processing Time 0.027 seconds

The Spatial Distribution of the Ancient Liaoze in the Lower Reach of Liao River and Shoreline Change Since the Middle Holocene in China (중국 요하 하류부 고대 요택의 공간 분포와 Holocene 중기 이후 해안선 변화)

  • Yoon, Soon-Ock;Kim, Hyoseon;Jia, Jienqing;Bok, Gi-dae;Hwang, Sangill
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.51-62
    • /
    • 2017
  • Liao River with the largest basin area in the northeastern part of China has constructed huge floodplain along the lower reach. Especially a vast marsh was developed around estuaries and coastline near Liaodong Bay. The marsh was called as Yotaek(or Liaoze) before the modern time, which is meaningful for understanding human life since prehistorian times. By the analysis of historical documents and geomorphic data, it can be assumed that the height of Yotaek of landward boundary reached 20~30m from Heishan to Liaoyang during Han dynasty. The shoreline of 7,000 yr BP is estimated to coincide with the contour line between 20m and 30m at present. And the ancient shoreline during Christ era indicates 10m.a.s.l., which is corresponding to the seaside boundary of the Yotaek. The shoreline of Liaodong Bay was progressed seaward 30km/ka during 1000~1100 AD, while 10~40km/ka during late 19 century ~ early 20 century.

A two-step interval risk assessment method for water inrush during seaside tunnel excavation

  • Zhou, Binghua;Xue, Yiguo;Li, Zhiqiang;Gao, Haidong;Su, Maoxin;Qiu, Daohong;Kong, Fanmeng
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.573-584
    • /
    • 2022
  • Water inrush may occur during seaside urban tunnel excavation. Various factors affect the water inrush, and the water inrush mechanism is complex. In this study, nine evaluation indices having potential effects on water inrush were analysed. Specifically, the geographic and geomorphic conditions, unfavourable geology, distance from the tunnel to sea, strength of the surrounding rock, groundwater level, tidal action, cyclical footage, grouting pressure, and grouting reinforced region were analysed. Furthermore, a two-step interval risk assessment method for water inrush management during seaside urban tunnel excavation was developed by a multi-index system and interval risk assessment comprised of an interval analytic hierarchy process, fuzzy comprehensive evaluation, and relative superiority analysis. The novel assessment method was applied to the Haicang Tunnel successfully. A preliminary interval risk assessment method for water inrush was performed based on engineering geological conditions. As a result, the risk level fell into a risk level IV, which represents a section with high risk. Subsequently, a secondary interval risk assessment method was performed based on engineering geological conditions and construction conditions. The risk level of water inrush is reduced to a risk level II. The results agreed with the current tunnel situation, which verified the reliability of this approach.

Analysis of changes of geomorphic riverbed and habitats suitability on flow rate (유량에 따른 하천지형변화와 서식처 적합도 분석)

  • Mi Kyoung Choi;Tae Un Kang;Chang Lae Jang;Hyun Uk An
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.488-488
    • /
    • 2023
  • 유량에 따른 수치모형(Nays2D) 하상변동 모의 결과를 토대로 서식처 적합도 분석 모델(PHABSIM: Phsical Habtiat Suitability Model)의 입력자료로 활용하여, 유량에 따른 하상 지형변화와 그에 따른 어류 서식처 적합도 변화를 분석한다. 금강 2km를 대상으로 2차원 모형인Nays2D를 적용하여 부등류 흐름(댐 방류량, 2년 빈도 유량, 100년 빈도 유량 등)에 따른 하상변동모의를 실시하였고, 모의 결과값(단면 표고, 유속, 수위)을 물리적 서식처 평가 모델인 PHABSIM의 입력자료로 활용하였다. 피라미 서식을 위한 적정 유속과 수심의 서식처 적합도 지수를 이용하여 각 유량별 가중가용면적(WUA: Weighted Usable Area)을 산정하여 비교 분석하여, 유량에 따른 단면 구조의 변화가 WUA와 피라미 서식처 적합도에 어떻게 영향을 미치는지 검토한다. 본 연구는 2차원 수치 모의 결과에 따른 단면(혹은 지형) 변화 양상과, 그에 따라 피라미를 비롯한 다른 생물종(어류, 저서성대형무척추동물)의 분포 경향에 연관성이 있는지를 실제 유량 변화와 생물종 조사 결과(물환경정보시스템에서 제공하는 생물종 데이터 활용)와 연계하여 검토 및 검증해보고, PHAMSIM을 이용한 서식처 적합도 분석 시 고려해야할 변수 및 검증 방법 제언에 중점을 둔다.

  • PDF

Weathering Characteristics of Granitic Hills Developed in Eastern Jincheon Basin, Korea (충북 진천분지 북동부에 발달한 화강암 풍화층의 풍화 특색)

  • Kim, Young-Rae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.1-11
    • /
    • 2020
  • A CIA analysis (A-CN-K and A-CNK-FM ternary diagram) indicates that, unlike the general granitic hills of the Korean Peninsula, the chemical weathering of the granitic grus (sandy regolith) in the eastern Jincheon basin is variable in geomorphic site except the Chuncheon basin. In the study area, there are three types of hills, such as; inner hills, linear isolated hills, and outer hills. The weathered mantles of the outer hills and linear isolated hills are weakly altered, whereas the inner hill, the Bonghyeon profile, shows a stronger chemical loss of the compositions approximating saprolite. There are small differences between the outer hills and linear isolated hills. The Geumwang site is considered fresh rock due to a low lever of alteration, although its sampling profile shows sandy weathering mantles. In the profiles of the Masan and Mugeuks sites, the lower part of weathering mantles has not experienced a significant level of component loss, but the upper regoliths have substantially been modified. The alteration of the hills occurs by chemical loss of CaO and Na2O. K2O exhibited little variation at all sampling suites and it has not changed into saprolite.

Geomorphological Properties and Changes of Goreabul Sand Beach in Yeongdeok (영덕 고래불 모래해안의 지형 특성과 변화)

  • Bang, Hyun Ju;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.83-92
    • /
    • 2011
  • The properties and changes of geomorphic relief and coastal deposits were analyzed at Goreabul sand beach in Yeongdeok-gun, the largest that in east coast of Kyungsangbuk-do Province. As the result of grain size analysis, in almost season except summer, the sands mainly deposited in Goraebul sand beach because longshore current drift northward contrary to Gangwon-do east coast, and summer longshore current is weak or change direction to south ward. Sand beach mostly came form erosion owing to typoon and storm and was deposit more coarse sand in the summer, and was produced deposition actively in the fall and winter. Front side of sand dune came from deposition on sand every season by sea breeze, especially in the winter.

Geomorphological Changes of the Okjukdong Dunefield Over the Last Decade (지난 10년간 대청도 옥죽동 사구의 지형 변화)

  • Choi, Kwang Hee;Kong, Hak-Yang;Park, Sung Min
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.31-42
    • /
    • 2019
  • The geomorphological changes of an unvegetated part of the Okjukdong coastal dune were analyzed between 2008 and 2018. Its natural landscape has been destroyed after artificial forestation, but there is no quantitative evidence on these changes. In this study, we measured the unvegetated area using a total station and a network RTK-GPS in 2008, 2014, and 2018. Using Krging method for the three point data sets, we constructed digital elevation models (DEMs) and analyzed topographic changes between the three years. The results showed that the sand of the study area decreased in volume from 2008 to 2014, because sand supply from the nearby beach was blocked by coastal forests. The sand volume temporarily increased from 2014 to 2018, because of the dune nourishment conducted in 2017. It seems that the upper part of the sand dune has shrunk, but the sand at the bottom has increased over the last decade.

Basic Concepts and Geological Applications of LiDAR (LiDAR 기법의 기본원리와 지질학적 적용)

  • Kim, Hyun-Tae;Kim, Young-Seog;We, Kwang-Jae
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.123-135
    • /
    • 2014
  • Earthquakes can cause serious loss of life and significant property damage. Thus, the study of active faults is important in evaluating future fault activity and hazards caused by future earthquake events. Structural mapping and the tracing of active faults are the primary steps in studies of active faults. Until now, active faults in South Korea have been mapped using aerial photography, satellite images, and low-quality DEMs. Lineament analysis as a means of identifying active faults is relatively difficult in Korea due to geological characteristics (weak tectonic activity) and dense vegetation cover. In this paper, we introduce the basic concept of the LiDAR technique (a new prospective remote sensing method) and a data analysis method that can overcome these problems. This paper will contribute to a better understanding of the airborne LiDAR technique and its application to South Korea. Some preliminary results from Korean and USA LiDAR data show the usefulness of this technique for tracing lineaments, active faults, and terraces in South Korea.

An Analysis on Spatio-Temporal Changes of Land Cover focusing on NDVI Using GIS and RS in Pyeongbuk Province, Northwest Korea (GIS와 RS를 이용한 토지피복 및 식생 분포의 시ㆍ공간적 변화 - 평안북도 서부 지역을 중심으로 -)

  • 이민부;김남신;최한성;신근하
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.835-848
    • /
    • 2003
  • This study deals with the spatio-temporal change of land cover and vegetation distribution between 1988 and 2001 using remote sensing images and CIS techniques in west area of Pyeongbuk Province, northwest Korea. Landsat TM and ETM images are geometrically and radiometrically corrected for the analysis of land cover and NDVI. Forested areas are decreased during 13 year from 1988 to 2001 in study area including Sakju, Daegwan, Guseong and Euiju of Pyeongbuk Province, because wasteland are increased by human impact and denuded land by landslide and flooding. DEM analysis presents that settlement and cropland are developed toward higher and steeper mountain slope, together with decrease NDIV values. these changes have resulted from unplanned increase of cropland without consideration of geomorphic condition. Therefore, more researches and reasonable policies are required to protect forest and cropland and stable food supply against natural hazard like landslide.

Extraction of Lineament and Its Relationship with Fault Activation in the Gaeum Fault System (가음단층계의 선형구조 추출과 선형구조와 단층활동의 관련성)

  • Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.69-84
    • /
    • 2019
  • The purpose of this study is to extract lineaments in the southeastern part of the Gaeum Fault System, and to understand their characteristics and a relationship between them and fault activation. The lineaments were extracted using a multi-layered analysis based on a digital elevation model (5 m resolution), aerial photos, and satellite images. First-grade lineaments inferred as an high-activity along them were classified based on the displacement of the Quaternary deposits and the distribution of fault-related landforms. The results of classifying the first-grade lineaments were verified by fieldwork and electrical resistivity survey. In the study area of 510 km2, a total of 222 lineaments was identified, and their total length was 333.4 km. Six grade lineaments were identified, and their total length was 11.2 km. The lineaments showed high-density distribution in the region along the Geumcheon, Gaeum, Ubo fault, and a boundary of the Hwasan cauldron consisting the Gaeum Fault System. They generally have WNW-ESE trend, which is the same direction with the strike of Gaeum Fault System. Electrical resistivity survey was conducted on eight survey lines crossing the first-grade lineament. A low-resistivity zone, which is assumed to be a fault damage zone, has been identified across almost all survey lines (except for only one survey line). The visual (naked eyes) detecting of the lineament was evaluated to be less objectivity than the automatic extraction using the algorithm. However, the results of electrical resistivity survey showed that first-grade lineament extracted by visual detecting was 83% reliable for inferred fault detection. These results showed that objective visual detection results can be derived from multi-layered analysis based on tectonic geomorphology.

Analysis of Erosion in Debris Flow Experiment Using Terrestrial LiDAR (지상 LiDAR를 이용한 토석류 실험의 침식량 분석)

  • Won, Sangyeon;Lee, Seung Woo;Paik, Joongcheol;Yune, Chan-Young;Kim, Gihong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.309-317
    • /
    • 2016
  • Debris flows are rapidly flowing masses of water mixed with soil and gravel from landslides which are caused by typhoons or rainstorms. The combination of Korea’s mountain dominated topography (70%) and seasonal heavy rains and typhoons causes landslides and large-scale debris flows from June to August. These phenomena often cause property damage and casualties that amount up to 20% of total annual disaster fatalities. The key point to predicting debris flow is to understand its movement mechanism, erosion, and deposition. In order to achieve a more accurate estimation of debris flow path and damage, this study incorporates quantitative analysis of high resolution LiDAR DEM (GSD 10cm) to delineate geomorphic and topographic changes induced by Jinbu real scale debris flow test.