• Title/Summary/Keyword: Geometry design

Search Result 2,060, Processing Time 0.028 seconds

Design Principles of Fractal Geometry as Complex System (복잡계 구조로서 프랙탈 기하학의 조형원리)

  • Lim, Eun-Young
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2004.11a
    • /
    • pp.195-196
    • /
    • 2004
  • Fractal geometry based upon the latest complex theory shows different features of design pattern quite different from the past. It is not yet sure which kind of effects it would bring about in the future, we think that it would help to create various spaces and organic design vision. Therefore we will look into the significances and adaptabilities in space design by studying fractal design principles of today's new model in space design

  • PDF

Die Shape Design for Cold Forged Products Using the Artificial Neural Network (신경망을 이용한 냉간단조품의 금형형상 설계)

  • Kim, D.J;Kim, T.H;Kim, B.M;Choi, J.C
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.727-734
    • /
    • 1997
  • In practice, the design of forging processes is performed based on an experience-oriented technology, that is designer's experience and expensive trial and errors. Using the finite element simulation and the artificial neural network, we propose an optimal die geometry satisfying the design conditions of final product. A three-layer neural network is used and the back propagation algorithm is employed to train the network. An optimal die geometry that satisfied the same between inner extruded rib and outer extruded one is determined by applying the ability of function approximation of neural network. The neural networks may reduce the number of finite element simulation for determine the optimal die geometry of forging products and further they are usefully applied to physical modelling for the forging design.

Development of the program for Optimal Design of High Speed Endmill (최적형상의 고속용 엔드밀 설계를 위한 프로그램 개발)

  • 고성림;한창규;서천석;김경배
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.500-503
    • /
    • 2003
  • The tool geometry parameters and cutting process have complex relationships. Until now, various cutting test were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process in high speed machining. Using various tools with different geometry, relationships between tool geometry parameter (rake angle, clearance angle, length of cutter) and cutting process (cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining

  • PDF

Differential Operators on a Triangular Mesh and Their Applications (삼각형 메쉬 상에서의 미분 연산자와 그 응용)

  • Baek, Seung-Yeob;Kam, Dong-Uk;Lee, Kunwoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.1
    • /
    • pp.44-54
    • /
    • 2015
  • Solving partial differential equations (PDEs) on a manifold setting is frequently faced problem in CAD, CAM and CAE. However, unlikely to a regular grid, solutions for those problems on a triangular mesh are not available in general, as there are no well-established intrinsic differential operators. Considering that a triangular mesh is a powerful tool for representing a highly-complicated geometry, this problem must be tackled for improving the capabilities of many geometry processing algorithms. In this paper, we introduce mathematically well-defined differential operators on a triangular mesh setup, and show some examples of their applications. Through this, it is expected that many CAD/CAM/CAE application will be benefited, as it provides a mathematically rigorous solution for a PDE problem which was not available before.

The Kinetography Model - a Mean of Producing Space Scores, Based on Recording Users' Movement in Space

  • Ardelean, Ioana
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.308-312
    • /
    • 2019
  • When one enters a space, perceives the material geometry of that space. Walking inside buildings or across the city is generating a geometry of moving bodies that fills the space. These two geometries coexist: a static geometry of the space and an invisible one of the moving bodies. The space that we actually experience, whether interior or exterior, is a continuous network of voids. Individuals' movement will fill the network of voids that we understand as "the city". Our environment of voids and borders is organized by the means of architecture and urbanism. The geometry generated by motion affects both the limits and the voids, thus space can be defined by the tandem of the moving bodies and their environment. We propose in this study a mean of investigating users' movement and thus understanding the qualities of space while introducing the concept of space scores as analytical maps and design tools.

A Study on Diverse Expression in Modern Fashion through the Principle of Fractal Geometry (프랙탈 기하학의 원리를 통한 현대 복식의 다의적 표현성에 대한 연구)

  • Um, So-Hee
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.4
    • /
    • pp.703-716
    • /
    • 2010
  • The objective of the study is to analyze expressions of modern fashion in relation to design principle of a science theory, fractal geometry, in order to identify various and multi-layered expressions of fashion. As for methodology, the study interprets principle and characteristics of fractal geometry based on literature review in areas of linguistic, philosophy, sociology and science. The research identifies expressive characteristics of fractal through empirical studies, and applies them to fashion in order to analyze how fractal design principles are reflected in modern fashion in terms of form and significance. Fractal aesthetics pursue order, balance, diversity and openness among disorder and insecurity. They are closely related to the function of modern fashion that works as a multi-layered code, instead of being confined to conventional idea about fashion that "functions" as "wear."

A Numerical Study on the Flow Characteristics of Side-suction Inlet Geometry for Centrifugal Pump (원심펌프 측면흡입구의 유동특성에 관한 수치해석적 연구)

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.7-12
    • /
    • 2009
  • This paper presents a numerical study on the design of side-suction inlet geometry which is used for multi stage centrifugal pumps or inline centrifugal pumps. In order to achieve an optimum inlet geometry and to explain the interactions between the different geometric configurations, the three dimensional computational fluid dynamics and the design of experiment methods have been applied. Geometric design variables describing the cross sectional area distribution through the inlet were selected. The objective functions are defined as the non-uniformity of the velocity distribution at the passage exit which is just in front of the impeller eyes. From the 2k factorial design results, the most important design variable was found and the performance of the side suction inlet was improved compared to the base line shape.

A Study on the Characteristics of Furniture Design Using Generative Design - Focus on the Furniture Design using Fractal Geometry and Voronoi Diagram - (생성적 디자인을 이용한 가구디자인의 특성에 관한 연구 - 프랙탈 기하학과 보로노이 다이어그램을 적용한 가구디자인을 중심으로 -)

  • Lee, Jin-Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.1
    • /
    • pp.89-97
    • /
    • 2011
  • Furniture design is no exception to human desire for pursuit of the nature. In various design fields, it has turned out nature-decorative method in the past, and also recently it has turned out bio-adaptive method which is more root design process using principal of generation in nature world. The purpose of this study is to analyze application methods and characteristics of fractal geometry and voronoi diagram which are most representative principals of generative design in nature by research on the example of furniture design using these principals. The results of having analyzed fumitures by generative design can be summarized as follows; design principals of fractal; superposition, scaling, repetition & gradation, deformation, distortion and voronoi diagram; individual speciation, variational patten, repetition gradation, ambiguous boundary create new design concept and emergent form in furniture design. Application methods are 'form emergence by algorithm', 'conventional process based on principals of generative design', and 'reproduction of pattern from generative design'. Biological reinterpretations and new explorations of principals of nature generation offer unbounded possibilities for furniture design.

The Design and Teaching Strategy of Geometry Program for the Mathematically Gifted (수학영재를 위한 기하 프로그램 설계 및 교수전략)

  • Jeon, Young-Ju
    • Journal of the Korean School Mathematics Society
    • /
    • v.13 no.2
    • /
    • pp.225-241
    • /
    • 2010
  • Even though geometry is an important part basic to mathematics, studies on the program designs and teaching strategies of geometry are insufficient. The aims of this study are to propose the model of program design for autonomous learners taking their characteristics of the mathematically gifted into consideration. The core of teaching materials are analytic geometry and projective geometry. And the new teaching strategy will introduce three steps ; a draft strategies step(problem presentation, problem solving), a supportive strategies step(abstraction of a mathematical concept, mathematical induction, and extension), a transference strategies step to teaching strategy suitable for mathematically gifted. As a result, this study will suggest the effective methods of geometry teaching for the mathematically gifted.

  • PDF

End-mill Modeling and Manufacturing Methodology via Cutting Simulation (Cutting Simulation을 이용한 End-milling Cutter의 모델링 및 제작에 관한 연구)

  • Kim Jae-Hyun;Kim Jong-Han;Ko Tae-Jo;Park Jung-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.151-159
    • /
    • 2006
  • This paper describes a design process of end-milling cutters: solid model of the designed cutter is constructed along with computation of cutter geometry, and the wheel geometry as well as wheel positioning data f3r fabricating end-mills with required cutter geometry is calculated. In the process, the main idea is to use the cutting simulation method by which the machined shape of an end-milling cutter is obtained via Boolean operation between a given grinding wheel and a cylindrical workpiece (raw stock). Major design parameters of a cutter such as rake angle, inner radius can be verified by interrogating the section profile of its solid model. We studied relations between various dimensional parameters and proposed an iterative approach to obtain the required geometry of a grinding wheel and the CL data for machining an end-milling cutter satisfying the design parameters. This research has been implemented on a commercial CAD system by use of the API function programming, and is currently used by a tool maker in Korea. It can eliminate producing a physical prototype during the design stage, and it can be used for virtual cutting test and analysis as well.