• Title/Summary/Keyword: Geometry constraint

Search Result 89, Processing Time 0.028 seconds

Ackermann Geometry-based Analysis of NHC Satisfaction of INS for Vehicular Navigation according to IMU Location

  • Cho, Seong Yun;Chae, Myeong Seok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, we analyze the Non-Holonomic Constraint (NHC) satisfaction of Inertial Navigation System (INS) for vehicular navigation according to Inertial Measurement Unit (IMU) location. In INS-based vehicle navigation, NHC information is widely used to improve INS performance. That is, the error of the INS can be compensated under the condition that the velocity in the body coordinate system of the vehicle occurs only in the forward direction. In this case, the condition that the vehicle's wheels do not slip and the vehicle rotates with the center of the IMU must be satisfied. However, the rotation of the vehicle is rotated by the steering wheel which is controlled based on the Ackermann geometry, where the center of rotation of the vehicle exists outside the vehicle. Due to this, a phenomenon occurs that the NHC is not satisfied depending on the mounting position of the IMU. In this paper, we analyze this problem based on Ackermann geometry and prove the analysis result based on simulation.

On the Feasibility of Interference Alignment in the Cellular Network

  • Chen, Hua;Wu, Shan;Hu, Ping;Xu, Zhudi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5324-5337
    • /
    • 2017
  • In this paper, we investigate the feasibility of interference alignment(IA) in signal space in the scenario of multiple cell and multiple user cellular networks, as the feasibility issue is closely related to the solvability of a multivariate polynomial system, we give the mathematical analysis to support the constraint condition obtained from the polynomial equations with the tools of algebraic geometry, and a new distribute IA algorithm is also provided to verify the accessibility of the constraint condition for symmetric system in this paper. Simulation results illustrate that the accessibility of the constraint condition is hold if and only if the degree of freedom(DoF) of each user can be divided by both the transmit and receive antenna numbers.

Simulation of Vehicle-Track-Bridge Dynamic Interaction by Nonlinear Hertzian Contact Spring and Displacement Constraint Equations (비선형 헤르쯔 접촉스프링과 변위제한조건식의 적용에 의한 차량-궤도-교량 동적상호작용 수치해석기법)

  • Chung Keun-Young;Lee Sung-Uk;Min Kyung-Ju
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.191-196
    • /
    • 2005
  • In this study, to describe vehicle-track-bridge dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are introduced. In this approach external loads acting on 1/4 vehicle model are self weight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by Penalty method. Also, to improve the numerical stability and to maintain accuracy of solution, the artificial damper and the reaction from constraint violation are introduced. A nonlinear time integration method, in this study, Newmark method is adopted for both equations of vehicles and structure. And to reduce the error caused by inadequate time step size, adaptive time-stepping technique is partially introduced. As the nonlinear Hertzian contact spring has no resistance to tensile force, the bouncing phenomena of wheelset can be described. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems.

  • PDF

Effect of Crack Tip Constraint on the Fracture Resistance Curve in CT Specimen with Same Thickness (동일두께의 CT 시편에서 구속효과가 파괴저항곡선에 미치는 영향)

  • Jo, Yeon-Je;Jang, Yun-Seok;Seok, Chang-Seong;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.529-539
    • /
    • 1996
  • Fracture resistance(J-R) curves, which are used for elastic-plastic fracture mechanics analyses, are known to be dependent on the specimen geometry. The objective of this paper is to investigate the effect of crack tip constraint an the J-R curves in CT specimens. Fracture toughness tests on CT specimens with varying planform size were performed and test results showed that the J-R curves were increased with an increase in the planform size. Finite element analysis were also performed and the numerical results showed that this experimental phenomenon was probably due to the relaxation of crack tip constraint resulting from the stress triaxiality.

An analysis on the robotic impact geometry with task velocity constraint (속도 제한에 의한 충격량 도형에 관한 연구)

  • Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.955-960
    • /
    • 1999
  • This paper describes the effect of impact configurations on a single robot manipulator. The effect of different configurations of kinematically redundant arms on impact forces at their end effectors during contact with the environment is investigated. Instead of the well-known impact ellipsoid, I propose an analytic method on the geometric configuration of the impact directly from the mathematical definition. By calculating the length along the specified motion direction and volume of the geometry, we can determine the characteristics of robot configurations in terms of both the impact along the specified direction and the ability of the robot withstanding the impact. Simulations of various impact configurations are discussed at the end of this paper.

  • PDF

A MULTI-DIMENSIONAL MAGNETOHYDRODYNAMIC CODE IN CYLINDRICAL GEOMETRY

  • Ryu, Dong-Su;Yun, Hong-Sik;Choe, Seung-Urn
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.223-243
    • /
    • 1995
  • We describe the implementation of a multi-dimensional numerical code to solve the equations for idea! magnetohydrodynamics (MHD) in cylindrical geometry. It is based on an explicit finite difference scheme on an Eulerian grid, called the Total Variation Diminishing (TVD) scheme, which is a second-order-accurate extension of the Roe-type upwind scheme. Multiple spatial dimensions are treated through a Strang-type operator splitting. Curvature and source terms are included in a way to insure the formal accuracy of the code to be second order. The constraint of a divergence-free magnetic field is enforced exactly by adding a correction, which involves solving a Poisson equation. The Fourier Analysis and Cyclic Reduction (FACR) method is employed to solve it. Results from a set of tests show that the code handles flows in cylindrical geometry successfully and resolves strong shocks within two to four computational cells. The advantages and limitations of the code are discussed.

  • PDF

Effect of dissimilar metal SENB specimen width and crack length on stress intensity factor

  • Murthy, A. Ramachandra;Muthu Kumaran, M.;Saravanan, M.;Gandhi, P.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1579-1586
    • /
    • 2020
  • Dissimilar metal joints (DMJs) are more common in the application of piping system of many industries. A 2- D and 3-D finite element analysis (FEA) is carried out on dissimilar metal Single Edged Notch Bending (DMSENB) specimens fabricated from ferritic steel, austenitic steel and Inconel - 182 alloy to study the behavior of DMJs with constraints by using linear elastic fracture mechanics (LEFM) principles. Studies on DMSENB specimens are conducted with respect to (i) dissimilar metal joint width (DMJW) (geometrical constraints) (5 mm, 10 mm, 20 mm, 30 mm and 50 mm) (ii) strength mismatch (material constraints) and (iii) crack lengths (16 mm, 20 mm and 24 mm) to study the DMJ behavior. From the FEA investigation, it is observed that (i) SIF increases with increase of crack length and DMJWs (ii) significant constraint effect (geometry, crack tip and strength mismatch) is observed for DMJWs of 5 mm and 10 mm (iii) stress distribution at the interfaces of DMSENB specimen exhibits clear indication of strength mismatch (iv) 3-D FEA yields realistic behavior (v) constraint effect is found to be significant if DMJW is less than 20 mm and the ratio of specimen length to the DMJW is greater than 7.4.

Analysis of Cleavage Fracture Toughness of PCVN Specimens Based on a Scaling Model (PCVN 시편 파괴인성의 균열 깊이 영향에 대한 Scaling 모델 해석)

  • Park, Sang-Yun;Lee, Ho-Jin;Lee, Bong-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.409-416
    • /
    • 2009
  • Standard procedures for a fracture toughness testing require very severe restrictions for the specimen geometry to eliminate a size effect on the measured properties. Therefore, the used standard fracture toughness data results in the integrity assessment being irrationally conservative. However, a realistic fracture in general structures, such as in nuclear power plants, may develop under the low constraint condition of a large scale yielding with a shallow surface crack. In this paper, cleavage fracture toughness tests have been made on side-grooved PCVN (precracked charpy V-notch) type specimens (10 by 10 by 55 mm) with various crack depths. The constraint effects on the crack depth ratios were evaluated quantitatively by the developed scaling method using the 3-D finite element method. After the fracture toughness correction from scaling model, the statistical size effects were also corrected according to the standard ASTM E 1921 procedure. The results were evaluated through a comparison with the $T_0$ of the standard CT specimen. The corrected $T_0$ for all of the PCVN specimens showed a good agreement to within $5.4^{\circ}C$ regardless of the crack depth, while the averaged PCVN $T_0$ was $13.4^{\circ}C$ higher than the real CT test results.

Design of an Optimal Planar Array Structure with Uniform Spacing for Side-Lobe Reduction

  • Bae, Ji-Hoon;Seong, Nak-Seon;Pyo, Cheol-Sig;Park, Jae-Ick;Chae, Jong-Suk
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2003
  • In this paper, we design an optimal planar array geometry for maximum side-lobe reduction. The concept of thinned array is applied to obtain an optimal two dimensional(2-D) planar array structure. First, a 2-D rectangular array with uniform spacing is used as an initial planar array structure. Next, we modify the initial planar array geometry with the aid of thinned array theory in order to reduce the maximum side-lobe level. This is implemented by a genetic algorithm under some constraint, minimizing the maximum side-lobe level of the 2-D planar array. It is shown that the optimized planar array structure can achieve low side-lobe level without optimizing the excitations of the array antennas.

Lane Detection Using Road Geometry Estimation

  • Lee, Choon-Young;Park, Min-Seok;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.226-231
    • /
    • 1998
  • This paper describes how a priori road geometry and its estimation may be used to detect road boundaries and lane markings in road scene images. We assume flat road and road boundaries and lane markings are all Bertrand curves which have common principal normal vectors. An active contour is used for the detection of road boundary, and we reconstruct its geometric property and make use of it to detect lane markings. Our approach to detect road boundary is based on minimizing energy function including edge related term and geometric constraint term. Lane position is estimated by pixel intensity statistics along the parallel curve shifted properly from boundary of the road. We will show the validity of our algorithm by processing real road images.

  • PDF