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Abstract

This paper describes how a priori road geometry and its
estimation may be used to detect road boundaries and lane
markings in road scene images. We assume flat road and
road boundaries and lane markings are all Bertrand
curves which have common principal normal vectors. An
active contour is used for the detection of road boundary,
and we reconstruct its geometric property and make use
of it to detect lane markings. Our approach to detect road
boundary is based on minimizing energy function
including edge related term and geometric constraint term.
Lane position is estimated by pixel intensity statistics
along the parallel curve shifted properly from boundary of
the road. We will show the validity of our algorithm by
processing real road images.

1.Introduction

Autonomous navigation has been a challenging task in
the past decades which includes many fields such as
vehicle control, sensor fusion and planning, computer
vision, and so on. One of the major functionality in
navigation is to keep track of desired path. Many
researchers used camera image for detecting road
boundary and lane markings to achieve road following or
lateral control of vehicles [1].

Road geometry information can be fused in the sensor
data processing algorithm to produce more reliable result
in the adaptive cruise control or collision warning system
which uses range sensors and vision system [2].

The main problems that must be faced in the detection
of road boundaries or lane markings are the presence of
shadows, producing artifacts onto the road surface and the
presence of other vehicles on the path, occluding the
visible region of the road [3]. The technique implemented
previously range from the characterization of lane
markings by color to an edge-based detection or model-
based detection [4].

The edge-based technique is simple to implement and

shows good result if edge-threshold value is well-chosen,
however, its performance is susceptible to noise pixel
elements such as road crack parts, edge induced by
shadow. Moreover, edge-threshold value may be easily
affected by the change of illumination.

Model-based technique has been used to perform the
analysis of intersection, however, it has several problems
such as maintenance of an appropriate geometrical model,
the difficulty in detecting and matching of features, and
the computational heavy load [5].

In this paper, we used physical constraint in road
geometry to aid the detection algorithm and speed up the
computation. Flat road and continuous road boundaries
are assumed in our lane detection algorithm. We used an
active contour to detect continuous road boundaries by
using energy function considering edge and geometrical
constraints. Lane marking on the road can be detected
reliably using the road boundary information and parallel
curve assumption.

This paper is organized as follows: Section 2 presents
the basics of the underlying approach used to find road
boundary and lane marking detection with the fact
assumed. Section 3 represents how active contour finds
the continuous road boundaries. Section 4 describes the
lane detection and some results from applying the
algorithm on highway road scene. Section 5 ends the
paper with a discussion about the problems of the
proposed algorithm and conclusion with future direction.

2.Preliminaries

We want to know road geometry information to control
vehicle to navigate on the road with safety. General road
structure is constrained in its geometric properties. Road
has boundaries, lane markings, and sign painting, etc. on
its surface. Road where there is no intersection has
minimum radius of curvature for the sake of driving
safety. So, we have the following assumptions:

Assumption 1: Road is flat plane such that curves on a
road are plane curves
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Assumption 2: Road boundaries are always seen in the
image and have continuous edges

Assumption 3: Road boundaries and lane marking are
Bertrand curves[11], that is, two curves on a road, at any
of their points, have a common principal normal,

Remarks: Assumption 1 guarantees that road region
on the image can be reconstructed by inverse perspective
projection even with single camera. Assumption 3 makes
us find lane marking by using continuous boundaries
according to Section 4.

Property of Perspective transform

We will study a camera model. We can choose the
coordinate system (CX,Y,Z,) for the three-dimensional
space and (c,u,v) for the image plane. The. coordinate
system (CAX,Y.Z) is called the standard coordinate
system of the camera. From Figure 1 it should be clear
that the relationship between image coordinates and 3-D
space coordinates can be written as

u=x*/r*
v=y*/t*

These equations allow us to interpret x* y* * as the
projective coordinates of a point in the retina. If t* = 0,
the 3-D point is in the focal plane of the camera. Thus the
coordinates u and v are not defined, and the corresponding
point is at infinity. Now, we will change 3-D coordinate
system for convenience. We go from the old coordinate
system centered at the optical center C to the new
coordinate system centered at O by a rotation and a
translation. Then, the reconstruction of the image point
and its inverse can be written as [6]

_ A(usina)+ B(~vsina + f cosa)
Sf(vsina - fcosa)

Af

= 1
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B=uhcosa+uf
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: (2)
v -Ycosa—-hsina

-Ysina+hcosa+ f

Camera Calibration [9]

The ground plane coordinate frame (x;, y,- ) is defined
with respect to the vehicle where y,- is straight ahead of
the vehicle and x;- is to the right of the vehicle. The image
is defined by column and row parameters as  (u,v). This
caiibration assumes that the camera is not rolled, therefore
every row location in the image maps to a unique y,

location on the ground. Specifically, only two rows of the
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Figure 1 Coordinate Systems (a) Camera
and Vehicle Coordinate (b) Image Plane
Coordinate

image are calibrated, v, and v,. These rows correspond to
y; and y, on the ground plane. Also for these rows in the
image, we measure the number of horizontal pixels p, and
p; in the image corresponding to a specific length on the
ground plane. The column locations, u, and u,
corresponding to x,, = 0 are measured. Therefore, using
this model, pixels lying in the two calibrated rows, having
position (1,v;) can be back-projected to the ground plane
by y =y and x = (u-u)/(p). Similarly, positions lying
on the calibrated y locations y, and y, can be projected
into the image using v = v, and u =xp, + u;.

To back-project a line from the image to the ground
plane, the line is intersected with the calibrated row
locations in the image to have a two-point description of
the line. Then the positions are back-projected as
described above. Similarly to project a line from the
ground plane to the image, the line is intersected with the
calibrated y locations in the ground to have a two point
description of the line, and positions are projected as
described above.

To back-project an arbitrary point, for example the
kernel location of an intersection, from the image to the
ground plane, we first define two different lines in the
image that pass through the point and intersect with the
calibrated row locations. We back-project the two lines
and then compute their intersection on the ground plane.
Similarly, to project an arbitrary point from the ground
plane to the image, we first define two different lines on
the ground that pass through the point and intersect with
the calibrated y locations. We then project the two lines
and then compute their intersection in the image.

This calibration uses a simple linear camera model
with some camera position assumptions (i.e., the camera
is not rolled with respect to the ground plane). This
calibration does not account for lens distortion. However
it is good enough to map the ground plane to the image as
long as the assumption that road is planar and paralle! to
vehicle is valid.
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Active Contours [8]

The methods of object tracking such as difference
image method and spatio-temporal descent method have
been researched by many researchers. These methods
have some demerits those are long calculation time and
the possibilities of successful identification of objects..
Snakes, that is active contour models, are deformable
contours that have been used in many image analysis
applications, including the image-based tracking of rigid
and non-rigid objects. The snake equations of motion
provide flexible tracking mechanisms that are driven by
simulated forces derived from time-varying images [9].

Snakes are defined based on energy functions, and can
be deformed to a certain contour form which would
converge to the minimum energy states by the forces
produced from energy differences. Snakes was introduced
by Kass in 1987, and he modeled objects by snake
functions. He optimized the energy states by using
calculus of wvariation. In 1988 Amini solved some
problems such as the phenomenon of concentration of
snakes points to a certain point and instability through
active contour model by using dynamic programming
method. Laurent suggested 'Balloons model' which gives
a kind of expansion force to prevent contraction
phenomenon [7].

Snake is a kind of optimal energy spline that can be
expressed equation ( 3 ) which has arc length 's' as a
parameter.

v = (x(s), ¥(5)) (3)

Using this snake, active contour, the edges of objects
can be extracted because snake has a tendency of natural
moving to the boundaries of objects due to energy
difference. So the definition of energy function is more
important subject in active contour problems because
snake moves along this energy difference. At the st stage
Kass configured energy functions comprised of internal
energy, image energy and external energy like equation

(4).

E snake (({; )( N )) dS

E snake =

= (Eim (‘7(‘9)) + Eimage (;(S)) (4)
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Internal energy: This energy term make the energy
contour that have smooth curved form and have no
discontinuous points in a snake. Kass defined his internal
energy as the function that can be divided into two sub
energy terms like equation ( 5 ).

E =

int

(E_,6 +E

cont curv )

(5)

o= N

(@@, )" + B, ")

where subscript letter 's' means the derivative of 's',

and a, B are the weighting coefficients. The first term
of above equation prevents the discontinuity of snake
because it was gained by differentiating its snake. If a
snake has discontinuities on its contours or radical
variation then this energy term should have relatively big
values. So by the characteristics of snake for finding the
minimum state of energy snake doesn't have any tendency
to have discontinuity.

The second term is called the curvature energy term
because it prevents radical curvature on its contour. It can
be produced by second derivatives.

Image energy: The image energy term is comprised of
three terms such as line energy, edge energy, and terminal
energy like equation ( 6 ).

mage ¥ line Epe + Vetge Eetge + Vier Erer (6)

The line energy term may be gained easily using the
intensities, I(x,y), from each pixel point of image, and
likes bright or dark areas. The edge energy term, E,q, is a
function for the consideration of edge of the objects in the
image. E,,,. have great values at the points at which the
difference of intensities is bigger than surrounded ones.
Above equation ( 6 ) may be changed to equation ( 7 ) by
considering discrete system.

Y . .2
Esnalre = Z ( ai (S)IV,- —'vi—ll
i=1
+ :Bi(s)lgi—] —-2v, + ‘7i+1lz

+ 7 -VIG | )

(7)

Kass used calculus of variation for finding the
minimum energy states, and configured some Euler's
equations. But his solution should find the inverse of N by
N matrix for a snake of N points. There are much
computational time for finding his solution. By the way
snake forces have somewhat small magnitude at the area
in which the derivatives of gradient term is zero, so snake
would move to the edges very slowly.

3.Road Boundary Detection
The boundaries of road usually have strong edge

characteristics, so if we make energy functions have much
image information then snakes would naturally converge
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to the boundaries. In active contour concept energy
functions should have minimum value when certain
conditions are satisfied. If the distance between
surrounding two nodes are maintained, the curvatures at
each node have not big values, and all the nodes stay on
the edge spline then the value of snake energy function
would converge to the minimum value. By this
characteristics of snake contour we could find the road
boundaries easily.

But the energy function of Kass may have much
computation time and instability, and a method using a
dynamic programming method gives somewhat complex
calculation strategies. To overcome this mathematical
complexity and instability of snake Jin-Woo Yi proposed
the point algorithm using the steepest descent method and
Brent's method [7]. He gained the directions of snake
forces from the application of steepest descent method,
and the minimum energy point by using Brent's method at
the directions of snake forces. So he had a more fast
convergence speed for a calculation of the minimum
energy point, and could exclude mathematical instability
due to noise and the differentiation of the energy function.
Also he used recursive Gaussian filtering method to filter
the noise in the image and to gain the gradients of image
intensity without direct differentiating the energy function

Energy function of point algorithm: The energy
function is comprised of three major terms such as
continuous energy, curvature energy, and image energy
like equation ( 8 ).

N
Esnake = Z(aiEcomi + ﬂiEcurvamre + }/iEimage ) ( 8 )

i=1
E..n is a energy function for the continuous formation
of snake contour, and maintains the distance between the
nodes of snake within the average distance of all the
nodes. It can be represented by equation (9 )

E d - =,

conti — ( "I,— ) (9 )

where v,,and d mean the ith node, the average
distance between two nodes respectively.
E, ... 18 designed to maintain smooth curved form

of contour using two vectors made of three surrounding
nodes like equation ( 10)

- . 2
_ ﬂ _I_IL_ Uiy
curvature — Mi| |~ — ( 10 )
lul| |ui+]|
where U; =V, V., Uy, =V, —V,

Einaee May be the lowest value when the gradient of
the pixel positioned (x, y) has maximum value. With this
characteristics he can find edges of the objects easily.
Ejmae €an be expressed as equation ( 11 ). Threshold value
should be selected a value above the maximum gradient

value squared in the image for the exclusion of minus
values of the energy function.

_ Threshold =|V1(x, y)
mage Threshold

(11)

Snake forces of point algorithm: Snake forces can be
generated using the energy function. to maintain the
average distance between two surrounding nodes, to make
snake's form smoothly curved and to find the edges of the
objects in the image. The magnitudes of the snake forces
don't be used to find the minimum energy points but the
directions of the snake's forces would be used to give the
directions of the steepest descent gradient. If the
directions of the snake forces are determined, then the
minimum of the energy points may be calculated by using
the Brent's method rather fast.

. We applied the above scheme to a road scene as
following steps. At first, we select initial snake points
around road boundaries. At each step we calculated the
directions of snake forces and found the points that had
the minimum energy values on the direction by the
Brent’s method. We checked whether those points have
the minimum energy value, and if the condition was
satisfied then we finished iterations.

4.Lane Detection

Our lane detection algorithm is based on the fact that
the line segment in 3-D world coordinate corresponds to
the line segment in 2-D image segment [10].

Let p, and p, be two points in the 3-D world
represented in homogeneous coordinate system. The line
passing through p, and p, consists of all points having the
form kp, + (1-k) p, for some constant k.

We let the perspective transform of p, and p, be

u /w u, | w, ) .
and , respectively, for the perspective
v /W v,/ w,

transformation matrix 7,

(@) (b)

Figure 2 Relationship between line segments in (a)
world coordinate and (b) image coordinate
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u u,
where | v, |=Tp, and | v, |=Tp, (12)
W W

The exact nature of the matrix 7 is not important in
this discussion. We need only use the fact that 7 is a linear
operator.

Tlkp,+ (1= k)p,]= kTp, + (1= k) p,

U u, (13)
=k v |+(d-k) v,
W W,

The line segment on the image plane passing through

u, / M’l uz / W2 . .
and consists of all points of the form

v,/ w,

u/w, u,/w,
q +(1-9)
v,/ w v,/ w,
for the some constant g.
To show that the perspective projection of every line
in the 3-D world is also a line in the image plane and
every line in the image plane corresponds to a line in the

3-D model, we need to show that for every parameter £,
there exists a parameter g, and vice versa.

u lw u, /w
=q(‘ ‘jm-q)(z 2) (15)
v, /w v, /w,

Therefore, the following relationship is obtained:

(14)

ku, +(1-ku,

kw, +(1—k)w,
kv, + (1= k)v,

kw, +(1-K)w,

_ kw,
fow, + (1- k)w,

k - qw2
Jow, + (1= k)w,

q
(16)

This equation states that if we know interior division
point of line segment in 3-D world, we are able to know
which point corresponds in image plane (Figure 2).

We will detect lane markings position by comparing pixel
intensity statistics generated along the parallel curve

shifted properly from the boundary of the road.

The algorithm is as follows:

Step 1: Road Boundary Reconstruction

Tow road boundaries are reconstructed in vehicle
coordinate by inverse perspective projection

Step 2: Shifted Parallel Curve Generation

Select one interior division point on the line segment
connecting two boundaries in normal direction

Step 3: Make Statistics

Calculate the histogram profile, mean intensity and
variance along the curve

Step 4: Compare and Find Lane Marking

Since lane markings have high intensity generally,
comparison between the intensity profiles in each
curve makes us choose which is lane marking.

The above algorithm is implemented in real road image
having shadows and vehicle occluding lane marking or
boundaries. Since summation of intensities along curve
has effect of noise suppression, we can detect lane
markings reliably even though lane markings are discrete
or damaged by some material or occluded partially by
some other objects. Results are shown in Figure 3 - 6.

Figure 3 Lane Detection for normal road

Figure 4 Statistics in each curve

In Figure 3, the most simple result is shown for the
case that no vehicle exists on the road. The black line
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indicates curves parallel to the boundaries. The statistics
of each curve is shown in Figure 4. Middle dot means
average intensity value and the vertical bar indicates the
variation by standard deviation. Curves along markings
have high intensity and have different standard deviations
from neighboring curves. We can have road region
statistics by calculating off-line or may update it at every
frame using bottom part of image. So, we can easily
detect lane markings by the statistics of each curve
parallel to boundary.

In Figure 5, there is a car running on the left lane and
occludes road region. The occluding vehicle changes
curve statistics and make it difficult to detect lane
marking, however, we can use the fact that lane marking
region is narrower than other road region and vehicle part.
In Figure 6, Statistics of each curve in Figure 5 is shown.
The vehicle affects standard variations of road and makes
its distribution more wide. Moreover, shadows by the
vehicle change statistics. In this case, we can use the
knowledge about road structure and remove false lane
position and select correct one.

Figure 5 Lane Detection
in case that vehicle occludes road

Sz £ X2 T KX I EE ST ELEEFE

Figure 6 Statistics in case that vehicle
occludes road

5.Conclusion

A method has been proposed in this paper that detects
road boundaries and lane markings. In the proposed
algorithm, we first find the road boundary using active
contour by minimizing energy function, and then we find
lane marking using previously determined boundary.

Our algorithm finds road boundary systematically not
with heuristic search. The convergence of active contour
to the road boundary can be affected by other line
component. This can be overcome by setting geometry
related term strong so that contour energy is dominated by
road boundary geometry. Lane detection algorithm finds
lane position by comparing curve statistics parallel to
boundary.
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