• Title/Summary/Keyword: Geometrical transformation

Search Result 90, Processing Time 0.034 seconds

Photochromic Behavior and Its Stability of a New Bifunctional Dye Composed of Spirobenzopyran and a Cinnamoyl Moiety

  • Shen Kaihua;Kim Jae Hong;Kim Go Woon;Cho Min Ju;Lee Sang Kyu;Choi Dong Hoon
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.180-186
    • /
    • 2005
  • A novel bifunctional dye composed of spirobenzopyran and a cinnamoyl moiety was prepared and its photochromic behavior under the illumination of monochromatic UV light was investigated. This colorless bifunctional dye exhibits typical photochromism in both the film and in solution, through the structural and geometrical transformation from spirobenzopyran to merocyanine accompanied by a photocrosslinking reaction between the cinnamoyl moieties. Two kinds of photochemical reaction were selectively achieved by irradiation with monochromatic UV light at wavelengths of 275 and 365 nm, respectively. The effect of the selective photochemical reaction on the photochromism of the dye and its decaying behavior was investigated.

Passive vibration control of plan-asymmetric buildings using tuned liquid column gas dampers

  • Fu, Chuan
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.339-355
    • /
    • 2009
  • The sealed, tuned liquid column gas damper (TLCGD) with gas-spring effect extends the frequency range of application up to about 5 Hz and efficiently increases the modal structural damping. In this paper the influence of several TLCGDs to reduce coupled translational and rotational vibrations of plan-asymmetric buildings under wind or seismic loads is investigated. The locations of the modal centers of velocity of rigidly assumed floors are crucial to select the design and the optimal position of the liquid absorbers. TLCGD's dynamics can be derived in detail using the extended non-stationary Bernoulli's equation for moving reference systems. Modal tuning of the TLCGD renders the optimal parameters by means of a geometrical transformation and in analogy to the classical tuned mass damper (TMD). Subsequently, fine-tuning is conveniently performed in the state space domain. Numerical simulations illustrate a significant reduction of the vibrations of plan-asymmetric buildings by the proposed TLCGDs.

Geometrical Comparisons between Rigorous Sensor Model and Rational Function Model for Quickbird Images

  • Teo, Tee-Ann;Chen, Liang-Chien
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.750-752
    • /
    • 2003
  • The objective of this investigation is to compare the geometric precision of Rigorous Sensor Model and Rational Function Model for QuickBird images. In rigorous sensor model, we use the on-board data and ground control points to fit an orbit; then, a least squares filtering technique is applied to collocate the orbit. In rational function model, we first use the rational polynomial coefficients provided by the satellite company. Then the systematic bias of the coefficients is compensated by an affine transformation using ground control points. Experimental results indicate that, the RFM provides a good approximation in the position accuracy.

  • PDF

Optimization of Diffractive Optical Elements by Genetic Algorithm

  • Yoon, Jin-Seon;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.30-36
    • /
    • 2000
  • In this paper, a method based on the Genetic Algorithm(GA) for phase optimization is proposed. The programmable hybrid optical interconnection system implemented by the spatial light modula-tor is tested for a near-real-time optical processing. Designed diffractive grating has a 74.7[%] high diffraction efficiency and a $1.73 {\times}10^{-1}$ uniformity quantitatively. The dependence of characteris-tics on several parameters in the grating design are analyzed. Also, as a result of the geometrical transformation to obtain quantitative data for $3 {\times} 3$ spot beams, an objective optical experiment using CCD array detector produces the mean of beam intensity as a gray level of 202, the maximum value is 225, the minimum value is 186, and uniformity is quantitatively $1.93 {\times} 10^{-1}$, similar to the simulation result.

A Study on the Color comparison of Korean Saek-dong and Italian Futurist Fashion (한국의 색동과 이탈리아 미래주의 복식의 색채 비교 연구)

  • 이금희
    • Journal of the Korean Home Economics Association
    • /
    • v.41 no.8
    • /
    • pp.33-53
    • /
    • 2003
  • A Study on the color comparison of Korean Saek-dong and Italian futurist fashion It is generally recognized that the color scheme and its characteristics as a product of living culture are strongly reflected in clothing. This study concentrates on the color comparison of Korean Saek-dong which has been used in traditional Korean clothing and Italian futurist fashion which showed dynamic characteristics and brilliant colors. The purpose of this study is to investigate the external format, emotions, functions and meanings of the colors in Korean Saek-dong and Futurist fashion, and to find similarities and differences between them. The results of the study are as follows. The similarities between them are harmony of vivid colors like a rainbow, no-use of black color and expression of rhythm through repeated geometrical shapes. They have been used as festive costumes and have implied meaning of happiness and pleasure. The differences, in the external formats, are as follows. Korean Saek-dong has striped patterns including the color white, and has regular distances among the stripes. But, Futurist fashion includes luminous or fluorescent colors and metallic colors. In addition, it has repeated motifs of geometrical shapes and geometrically divided areas. While Saek-dong expresses Sangsaeng through the conceptual use of color, Futurist fashion shows simultaneity, speed and dynamics through spiritual functions of crossing and inter-penetration. In emotional aspect, Saek-dong expresses pleasure of children's mind and Futurist fashion expresses pleasure of city. In functional aspect, Saek-dons expresses a concept of ceremonial beauty, which is spiritual and symbolizes good auspices, holiness and sorcery. So it is used for ceremonial costume. But, Futurist fashion reflects the harmony of colors created from modem and urban images and shows the willingness and emotion of solving futuristic avant-garde, modernity, dynamics, transformation and bellicosity. So it is used for daywear. While Saek-dong represents succession of tradition, Futurist fashion represents resistance of tradition in cultural aspects.

The geometry of Sulbasu${\={u}}$tras in Ancient India (고대 인도와 술바수트라스 기하학)

  • Kim, Jong-Myung;Heo, Hae-Ja
    • Journal for History of Mathematics
    • /
    • v.24 no.1
    • /
    • pp.15-29
    • /
    • 2011
  • This study was carrying out research on the geometry of Sulbas${\={u}}$tras as parts of looking for historical roots of oriental mathematics, The Sulbas${\={u}}$tras(rope's rules), a collection of Hindu religious documents, was written between Vedic period(BC 1500~600). The geometry of Sulbas${\={u}}$tras in ancient India was studied to construct or design for sacrificial rite and fire altars. The Sulbas${\={u}}$tras contains not only geometrical contents such as simple statement of plane figures, geometrical constructions for combination and transformation of areas, but also algebraic contents such as Pythagoras theorem and Pythagorean triples, irrational number, simultaneous indeterminate equation and so on. This paper examined the key features of the geometry of Sulbas${\={u}}$tras and the geometry of Sulbas${\={u}}$tras for the construction of the sacrificial rite and the fire altars. Also, in this study we compared geometry developments in ancient India with one of the other ancient civilizations.

Robust Finger Shape Recognition to Shape Angle by using Geometrical Features (각도 변화에 강인한 기하학적 특징 기반의 손가락 인식 기법)

  • Ahn, Ha-Eun;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1686-1694
    • /
    • 2014
  • In this paper, a new scheme to recognize a finger shape in the depth image captured by Kinect is proposed. Rigid transformation of an input finger shape is pre-processed for its robustness against the shape angle of input fingers. After extracting contour map from hand region, observing the change of contour pixel location is performed to calculate rotational compensation angle. For the finger shape recognition, we first acquire three pixel points, the most left, right, and top located pixel points. In the proposed algorithm, we first acquire three pixel points, the most left, right, and top located pixel points for the finger shape recognition, also we use geometrical features of human fingers such as Euclidean distance, the angle of the finger and the pixel area of hand region between each pixel points to recognize the finger shape. Through experimental results, we show that the proposed algorithm performs better than old schemes.

Single Photo Resection Using Cosine Law and Three-dimensional Coordinate Transformation (코사인 법칙과 3차원 좌표 변환을 이용한 단사진의 후방교회법)

  • Hong, Song Pyo;Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.189-198
    • /
    • 2019
  • In photogrammetry, single photo resection is a method of determining exterior orientation parameters corresponding to a position and an attitude of a camera at the time of taking a photograph using known interior orientation parameters, ground coordinates, and image coordinates. In this study, we proposed a single photo resection algorithm that determines the exterior orientation parameters of the camera using cosine law and linear equation-based three-dimensional coordinate transformation. The proposed algorithm first calculated the scale between the ground coordinates and the corresponding normalized coordinates using the cosine law. Then, the exterior orientation parameters were determined by applying linear equation-based three-dimensional coordinate transformation using normalized coordinates and ground coordinates considering the calculated scale. The proposed algorithm was not sensitive to the initial values by using the method of dividing the longest distance among the combinations of the ground coordinates and dividing each ground coordinates, although the partial derivative was required for the nonlinear equation. In addition, since the exterior orientation parameters can be determined by using three points, there was a stable advantage in the geometrical arrangement of the control points.

Mosaic image generation of AISA Eagle hyperspectral sensor using SIFT method (SIFT 기법을 이용한 AISA Eagle 초분광센서의 모자이크영상 생성)

  • Han, You Kyung;Kim, Yong Il;Han, Dong Yeob;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • In this paper, high-quality mosaic image is generated by high-resolution hyperspectral strip images using scale-invariant feature transform (SIFT) algorithm, which is one of the representative image matching methods. The experiments are applied to AISA Eagle images geo-referenced by using GPS/INS information acquired when it was taken on flight. The matching points between three strips of hyperspectral images are extracted using SIFT method, and the transformation models between images are constructed from the points. Mosaic image is, then, generated using the transformation models constructed from corresponding images. Optimal band appropriate for the matching point extraction is determined by selecting representative bands of hyperspectral data and analyzing the matched results based on each band. Mosaic image generated by proposed method is visually compared with the mosaic image generated from initial geo-referenced AISA hyperspectral images. From the comparison, we could estimate geometrical accuracy of generated mosaic image and analyze the efficiency of our methodology.

Projected Image Reconstruction Using Higher Order B-Spline (사영된 영상의 고차원 비-스플라인을 이용한 복원법)

  • Kim Sung-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.97-108
    • /
    • 2005
  • In this paper a method of reconstructing a desired image through the geometrical transformation and the interpolation techniques is presented by comparing different interpolation schemes. Several different interpolation schemes are compared with respect to the amount of error that is the difference between the original and the reverse-projective transformed images. Higher ordered B-spline interpolation turned to be superior to other techniques in reconstructing the image which is desired to be close to the unskewed image as much as possible. In the results, this paper demonstrates that the reverse projection using the higher ordered B-spline interpolation is superior to those conventional interpolation methods, linear, cubic spline for reconstructing image. In experiments, the error decreases as the order of B-spline increases. The proposed technique is useful for various practical and theoretical applications in the area of satellite, medical, and commercial image processing.

  • PDF