DOI QR코드

DOI QR Code

Robust Finger Shape Recognition to Shape Angle by using Geometrical Features

각도 변화에 강인한 기하학적 특징 기반의 손가락 인식 기법

  • Ahn, Ha-Eun (Department of Electronics, Kwangwoon University) ;
  • Yoo, Jisang (Department of Electronics, Kwangwoon University)
  • Received : 2014.02.25
  • Accepted : 2014.03.31
  • Published : 2014.07.31

Abstract

In this paper, a new scheme to recognize a finger shape in the depth image captured by Kinect is proposed. Rigid transformation of an input finger shape is pre-processed for its robustness against the shape angle of input fingers. After extracting contour map from hand region, observing the change of contour pixel location is performed to calculate rotational compensation angle. For the finger shape recognition, we first acquire three pixel points, the most left, right, and top located pixel points. In the proposed algorithm, we first acquire three pixel points, the most left, right, and top located pixel points for the finger shape recognition, also we use geometrical features of human fingers such as Euclidean distance, the angle of the finger and the pixel area of hand region between each pixel points to recognize the finger shape. Through experimental results, we show that the proposed algorithm performs better than old schemes.

본 논문에서는 키넥트(Kinect)를 통해 획득한 깊이 영상에서 손가락의 모양을 인식하는 새로운 기법을 제안한다. 각도 변화에 강인하게 하기 위하여 입력 손 영상의 회전 보상 각도를 계산한 뒤 강체(rigid) 변환을 통하여 손 영상을 회전 변환시킨다. 회전 보상 각도를 계산하기 위하여 손 영상의 경계선을 추출한 뒤 경계선을 이루는 화소들의 좌표의 변화를 관찰한다. 제안하는 기법에서는 손가락 모양을 인식하기 위하여 손 영역에서 최 상단, 최 우측, 최 좌측 화소 좌표를 획득한 뒤, 손가락의 기하학적 특징에 착안하여 좌표들 사이의 거리 변화와 좌표들 사이의 각도변화 그리고 손 영역의 화소 면적을 이용하게 된다. 실험을 통해 제안하는 기법이 기존의 기법보다 성능이 우수한 것을 확인하였다.

Keywords

References

  1. A. Heap and D. Hogg, "Improving Specificity in PDMs using a Hierarchical Approach," Proc. British Machine Vision Conference, Essex, UK, vol. 1, pp. 80-89, Sept. 1997.
  2. S. K. Kang, K. Y. Chung, K. W. Rim and J. H. Lee, "Skin Color Based Hand and Finger Detection for Gesture Recognition in CCTV Surveillance," The Korea Contents Association, vol. 10, pp. 1-10, Oct, 2011.
  3. S. J. Hoon, "Finger Counting Using Computer Vision", The Korean Institute of Communications and Information Sciences, Winter Conference, Seoul, Korea, pp. 657-658 Jan. 2013.
  4. J. Deutscher, A. Blake, and I. Reid, "Articulated Body Motion Capture by Annealed Particle Filtering," Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, South California, USA, vol. 2, pp. 126-133, June 2000.
  5. Y. Wu and T. Huang, "Capturing Articulated Human Hand Motion: A Divide-and-Conquer Approach," Proc. 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, vol. 1, pp. 606-611, 1999.
  6. L. K. Lee, S. Y. An and S. Y. Oh, "A Robust Finger trip Extraction and Extended CAMSHIFT based Hand Gesture Recognition for Natural Human-like Human-Robot Interaction", Institute of Control, Robotics and Systems, vol. 4, pp. 328-336, Apr. 2012.
  7. J. Park, S. D. Hyun and C. Lee, "Real-time Finger Gesture Recognition", Human Computer Interaction KOREA, vol. 1. pp. 847-850, Feb. 2008.
  8. B. Stenger, A. Thayananthan, P. Torr, and R. Cipolla, "Hand Pose Estimation Using Hierarchical Detection," Proc. European Conference on Computer Vision, Lecture Notes in Computer Science, Prague, Czech Republic, vol. 3058, pp. 105-116, May 2004.
  9. J. Lee and T. Knuii, "Model-based Analysis of Hand Posture," Proc. IEEE Computer Graphics and Application, New York, USA, vol. 15, no. 5, pp. 77-86, 1995. https://doi.org/10.1109/38.403831
  10. J. Kuch and T. Huang, "Vision based Hand Modeling and Tracking for Virtual Teleconferencing and Telecollaboration," Proc. 5th International Conference on Computer Vision, Cambridge, USA, pp. 666-671, June 1995.
  11. H. I. Suk, J. H. Lee and S. W. Lee, "Real-time Hand Pose Tracking and Finger Action Recognition Based on 3D Hand Modeling", Korean Institute of Information Scientists and Engineers, vol. 12, no 12. pp. 780-899, Dec. 2008.
  12. H. E. Ahn and J. Yoo, "Finger Shape Recognition Algorithm in Geometrical Ways", The Korean Institute of Communications and Information Sciences, Winter Conference, Seoul, Korea, pp 742-743 Nov. 2013.

Cited by

  1. 손 최장너비 기반 손바닥 영역 검출 vol.18, pp.4, 2014, https://doi.org/10.5392/jkca.2018.18.04.398