• 제목/요약/키워드: Geometrical Structure

검색결과 656건 처리시간 0.023초

회전자유도를 갖는 평면쉘요소에 의한 박판구조물의 기하비선형해석 (Geometrical Nonlinear Analysis of Thin-walled Structures by Flat Shell Elements with Drilling D.O.F.)

  • 최창근;송명관
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.317-324
    • /
    • 1998
  • A nonlinear anile element formulation of flat shell elements with drilling d.o.f, is presented for the geometrical nonlinear analysis of thin-walled structures. The shell element to be applied in finite element analysis was developed by combining a membrane element named as CLM with drilling rotation d.o.f, and plate bending element. The combined shell element possesses six degrees of freedom per node. The element showed the excellent performance in the linear analysis of the folded plate structures, in which the normal rotational rigidity of folded plates is considered, therefore, using this element geometrical nonlinear analysis of those structures is fulfilled in this study. An incremental total Larangian approach is adopted through out in which displacements are referred to the original configuration. Comparing the results with those of other researches shows the performance of this element and a folded plate structure is analyzed as an example.

  • PDF

Finite strip analysis of a box girder simulating the hull of a ship

  • Akhras, G.;Tremblay, J.P.;Graham, T.;Cheung, M.S.;Li, W.C.
    • Structural Engineering and Mechanics
    • /
    • 제15권2호
    • /
    • pp.225-238
    • /
    • 2003
  • In the present study, the finite strip analysis of a box girder to simulate a ship's hull model is carried out to investigate its inelastic post-buckling behavior and to predict its ultimate flexural strength. Residual stresses and initial geometrical imperfections are both considered in the combined material and geometrical nonlinear analysis. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity are applied in modeling the elasto-plastic behavior of material. The Newton-Raphson iterative process is also employed in the analysis to achieve convergence. The numerical results agree well with the experimental data. The effects of some material and geometrical parameters on the ultimate strength of the structure are also investigated.

등제한조건 함수를 이용한 구조물의 호몰로지 설계 (Structural Homology Design Using Equality Constraints)

  • 이권희;박경진
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.872-881
    • /
    • 1996
  • The concept of homology design has been devised for the application to large telescope structure by S.v.Hoerner. It is defined that the deformation of a structure shall be called homologous, if a given geometrical relation holds, for a given number of structural points, before, during, and after the deformation. Recently, the need of homology design in the structural design has been increase due to the required precision in the structure. Some researchers have utilized the theory on the structural design with finite element method in the late 1980s In the present investigation, a simple method using geometrical equality constraints is suggested to gain homologous deformation. The previous method is improved in that the decomposition of FEM eqation, which is very expensive, is not necessary. The basic formulations of the homology design with the optimization concept are described and several practical examples are solved to verify the usefulness and validity. Especially, a back-up structure of a satellite antenna is designed by the suggested method. The results are compared with those of existing researches.

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure

  • Ramteke, Prashik Malhari;Panda, Subrata K.;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.865-875
    • /
    • 2019
  • The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is obtained (Hamilton's principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity (even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel and discussed in details.

A finite strip method for elasto-plastic analysis of thin-walled structures under pure bending

  • Cheung, M.S.;Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제8권3호
    • /
    • pp.233-242
    • /
    • 1999
  • In the present study, the elasto-plastic analysis of prismatic plate structures subjected to pure bending is carried out using the finite strip method. The end cross-sections of the structure are assumed to remain plane during deformation, and the compatibility along corner lines is ensured by choosing proper displacement functions. The effects of both the initial geometrical imperfections and residual stresses due to fabrication are included in the combined geometrically and materially nonlinear simulation. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity are applied in modelling the elasto-plastic behavior of material. Newton-Raphson iterations are carried out as the rotation of the end cross sections of the structure is increased step by step. The parameter representing the overall axial strain of structure is adjusted constantly during the iteration process in order to eliminate the resulting overall axial force on any cross-section of the structure in correspondence with the assumption of zero axial force in pure bending. Several numerical examples are presented to validate the present method and to investigate the effects of some material and geometrical parameters.

Bayesian in-situ parameter estimation of metallic plates using piezoelectric transducers

  • Asadi, Sina;Shamshirsaz, Mahnaz;Vaghasloo, Younes A.
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.735-751
    • /
    • 2020
  • Identification of structure parameters is crucial in Structural Health Monitoring (SHM) context for activities such as model validation, damage assessment and signal processing of structure response. In this paper, guided waves generated by piezoelectric transducers are used for in-situ and non-destructive structural parameter estimation based on Bayesian approach. As Bayesian approach needs iterative process, which is computationally expensive, this paper proposes a method in which an analytical model is selected and developed in order to decrease computational time and complexity of modeling. An experimental set-up is implemented to estimate three target elastic and geometrical parameters: Young's modulus, Poisson ratio and thickness of aluminum and steel plates. Experimental and simulated data are combined in a Bayesian framework for parameter identification. A significant accuracy is achieved regarding estimation of target parameters with maximum error of 8, 11 and 17 percent respectively. Moreover, the limitation of analytical model concerning boundary reflections is addressed and managed experimentally. Pulse excitation is selected as it can excite the structure in a wide frequency range contrary to conventional tone burst excitation. The results show that the proposed non-destructive method can be used in service for estimation of material and geometrical properties of structure in industrial applications.

인쇄 잉크의 최대 전이율에 관한 연구 (Studies on the Maximum Transfer Rate of Printing Ink)

  • 강상훈
    • 한국인쇄학회지
    • /
    • 제13권1호
    • /
    • pp.1-12
    • /
    • 1995
  • Polymeric mesogens having a regularly alternating rigid-flexible repeating structure in the main-chain polymer exhibit distinct even-odd oscillation in their thermodynamic quantities with respect to the number of methylene units in the spacer. The even-odd oscillation depends on the number of methylene groups in the spacer the entropy change at the NI(nematic-isotropic) phase transition becomes less distinct when the linking group is replaced by the carbonate. In our previous work, we have suggested that the characteristics arise from the geometrical arrangement of the linkage. In this work, we have prepared a series of carbonate-type monomer and dimer liquid crystals. The thermodynamic behaviors at the NI phase transition have been compared with those previous reported for the ether- or ester-type liquid crystals. For the dimer series, the orientational order parameter of the mesogenic core was determined by using H-NMR technique. The origin of the difference observed among linking groups was found to the geometrical characteristics of chemical structure.

  • PDF

GK-DEVS : 3차원 인간제작 시스템의 시뮬레이션을 위한 형상 기구학 DEVS (GK-DEVS : Geometric and Kinematic DEVS for Simulation of 3 Dimensional Man-Made Systems)

  • 황문호;천상욱;최병규
    • 한국시뮬레이션학회논문지
    • /
    • 제9권1호
    • /
    • pp.39-54
    • /
    • 2000
  • Presented in this paper is a modeling and simulation methodology for 3 dimensional man-made systems. Based on DEVS(discrete event system specification) formalism[13], we propose GK-DEVS (geometrical and kinematic DEVS) formalism to describe the geometrical and kinematic structure and continuous state dynamics. To represent geometry and kinematics, we add a hierarchical structure to the conventional atomic model. In addition, we employ the "empty event" and its external event function for continuous state changing. In terms of abstract simulation algorithm[13], the simulation method of GK-DEVS, named GK-Simulator, is proposed for combined discrete-continuous simulation. Using GK-DEVS, the simulation of an FMS(flexible manufacturing system) consisting of a luring machine, a 3-axis machine and a RGV-mounted robot has been peformed.en peformed.

  • PDF

First-Principle Study on Structural and Electronic Properties of zigzag Carbon Nanotubes

  • Lee, Yong ju;Park, Jejune
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.446-449
    • /
    • 2014
  • Carbon Nanotube (CNT) have been intensively investigated since they have been considered as building blocks of nanoscience and nanotechnology. Theoretical and computational studies on CNTs have revealed their physical and chemical properties and helped researchers build various experimental devices to study them in depth. However, there have been only few systematic studies on detailed changes in electronic structures of CNTs due to geometrical structure modifications. In this regard, it is necessary to perform systematic investigations of the modifications in electronic structures of CNTs, as their geometrical configurations are altered, using the first-principles density functional theory. In other words, it is essential to determine the true equilibrium structure of CNTs. In this work, we considered the different atomic configurations by maintaining their symmetries, but changing all the inequivalent bonding types one by one. Furthermore, as for CNTs, for example, the way the graphene sheet is wrapped is represented by a pair of indices (n,m) and electronic structures of CNTs vary depending on different indices. Our results suggest all the significant couplings between electronic and geometric structures in CNTs.

  • PDF

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.