• Title/Summary/Keyword: Geometrical Modeling

검색결과 228건 처리시간 0.029초

Deformation prediction by a feed forward artificial neural network during mouse embryo micromanipulation

  • Abbasi, Ali A.;Vossoughi, G.R.;Ahmadian, M.T.
    • Animal cells and systems
    • /
    • 제16권2호
    • /
    • pp.121-126
    • /
    • 2012
  • In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were used as inputs of the model while indentation force (f) was considered as output. In the second NN model, indentation force (f), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were considered as inputs of the model and dimple depth was predicted as the output of the model. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. Experimental data deduced by Fl$\ddot{u}$ckiger (2004) were collected to obtain training and test data for the NN. The results of these investigations show that the correlation values of the test and training data sets are between 0.9988 and 1.0000, and are in good agreement with the experimental observations.

A Self-Consistent Semi-Analytical Model for AlGaAs/InGaAs PMHEMTs

  • Abdel Aziz, M.;El-Banna, M.;El-Sayed, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권1호
    • /
    • pp.59-69
    • /
    • 2002
  • A semi-analytical model based on exact numerical analysis of the 2DEG channel in pseudo-morphic HEMT (PMHEMT) is presented. The exactness of the model stems from solving both Schrodinger's wave equation and Poisson's equation simultaneously and self-consistently. The analytical modeling of the device terminal characteristics in relation to the charge control model has allowed a best fit with the geometrical and structural parameters of the device. The numerically obtained data for the charge control of the channel are best fitted to analytical expressions which render the problem analytical. The obtained good agreement between experimental and modeled current/voltage characteristics and small signal parameters has confirmed the validity of the model over a wide range of biasing voltages. The model has been used to compare both the performance and characteristics of a PMHEMT with a competetive HEMT. The comparison between the two devices has been made in terms of 2DEG density, transfer characteristics, transconductance, gate capacitance and unity current gain cut-off frequency. The results show that PMHEMT outperforms the conventional HEMT in all considered parameters.

Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams

  • Yuksel, S. Bahadir;Yarar, Alpaslan
    • Structural Engineering and Mechanics
    • /
    • 제56권5호
    • /
    • pp.787-796
    • /
    • 2015
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.

Web Guide Process in Cold Rolling Mill : Modeling and PID Controller

  • Ahn, Byoung-Joon;Park, Ju-Yong;Chang, Yu-Shin;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1074-1085
    • /
    • 2004
  • There are many intermediate web guides in cold rolling mills process such as CRM (cold rolling mill), CGL (continuous galvanizing line), EGL (electrical galvanizing line) and so on. The main functions of the web guides are to adjust the center line of the web (strip) to the center line of the steel process. So they are called CPC (center position control). Rapid process speed cause large deviation between the center position of the strip and the process line. Too much deviation is not desirable. So the difference between the center position of the strip and the process line should be compensated. In general, the center position control of the web is obtained by the hydraulic driver and electrical controller. In this paper, we propose modelling and several controller designs for web-guide systems. We model the web and guide by using geometrical relations of the guide ignored the mass and stiffness of the web. To control the systems, we propose PID controllers with their gains tuned by the Ziegler-Nichols method, the H$\_$$\infty$/ controller model-matching method, and the coefficient diagram method (CDM). CDM is modified for high order systems. The results are verified by computer simulations.

Springback FE modeling of titanium alloy tubes bending using various hardening models

  • Shahabi, Mehdi;Nayebi, Ali
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.369-383
    • /
    • 2015
  • In this study, effect of various material hardening models based on Holloman's isotropic, Ziegler's linear kinematic, non-linear kinematic and mixture of the isotropic and nonlinear kinematic hardening laws on springback prediction of titanium alloy (Ti-3Al-2.5V) in a tube rotary draw bending (RDB) process was investigated with presenting the keynotes for a comprehensive step by step ABAQUS simulation. Influence of mandrel on quality of the final product including springback, wall-thinning and cross-section deformation of the tube was investigated, too. Material parameters of the hardening models were obtained based on information of a uniaxial test. In particular, in the case of combined iso-nonlinear kinematic hardening the material constants were calibrated by a simple approach based on half-cycle data instead of several stabilized cycles ones. Moreover, effect of some material and geometrical parameters on springback was carried out. The results showed that using the various hardening laws separately cannot describe the material hardening behavior correctly. Therefore, it is concluded that combining the hardening laws is a good idea to have accurate springback prediction. Totally the results are useful for predicting and controlling springback and cross-section deformation in metal forming processes.

DEVELOPMENT OF INTERFACIAL AREA TRANSPORT EQUATION

  • ISHII MAMORU;KIM SEUNGJIN;KELLY JOSEPH
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.525-536
    • /
    • 2005
  • The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or chum-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to chum-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical fir-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired In vertical co-current downward air-water two-phase flow through round pipes of two different sizes.

Probabilistic ultimate strength analysis of submarine pressure hulls

  • Cerik, Burak Can;Shin, Hyun-Kyoung;Cho, Sang-Rai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.101-115
    • /
    • 2013
  • This paper examines the application of structural reliability analysis to submarine pressure hulls to clarify the merits of probabilistic approach in respect thereof. Ultimate strength prediction methods which take the inelastic behavior of ring-stiffened cylindrical shells and hemi-spherical shells into account are reviewed. The modeling uncertainties in terms of bias and coefficient of variation for failure prediction methods in current design guidelines are defined by evaluating the compiled experimental data. A simple ultimate strength formulation for ring-stiffened cylinders taking into account the interaction between local and global failure modes and an ultimate strength formula for hemispherical shells which have better accuracy and reliability than current design codes are taken as basis for reliability analysis. The effects of randomness of geometrical and material properties on failure are assessed by a prelimnary study on reference models. By evaluation of sensitivity factors important variables are determined and comparesons are made with conclusions of previous reliability studies.

중력학적 방법 및 위성측지 방법에 의한 지오이드 모델링에 관한 연구 (A Study on the Geoid Modeling by Gravimetric Methods and Methods of Satellite Geodesy)

  • 이석배
    • 한국측량학회지
    • /
    • 제18권4호
    • /
    • pp.359-367
    • /
    • 2000
  • 이 논문은 지구중력포텐셜에 대한 포텐셜계수모델이 표고이상을 계산하는데 사용될 수 있다는 것과, 지오 이드 계산에 있어서 표고이상을 고려하였을 때 보다 정밀한 지오이드고를 산출할 수 있다는 것을 보여 주고 있다. 연구를 위해 EGM96의 계수와 수정계수가 사용되었고 한반도 일원의 수치지형모델인 KODEM33이 사용되었다. 연구 결과 나타난 표고이상의 크기는 최대 0.025 m, 평균 -0.015 m의 크기를 보여주었다. 본 연구에서 계산된 중력지오이드 모델의 평가를 위하여 GPS/Leveling데이터로부터 기하학적 지오이드를 산출하였으며, 비교 결과 교차의 평균값과 표준편차는 0.0114 m와 0.2817 m를 나타내 개선된 결과를 보여 주었다.

  • PDF

M&S를 통한 지하탄약고의 격실 방폭문 내폭력 산정 연구 (A Study on the Calculation of the Design Loads for Blast Doors of Underground Ammunition Facilities Using M&S)

  • 박영준;백종혁;손기영
    • 한국군사과학기술학회지
    • /
    • 제19권3호
    • /
    • pp.302-310
    • /
    • 2016
  • An underground ammunition facility requires less quantity distances than the aboveground counterpart. However, chamber blast doors which resist the high blast-pressures are necessary for prevention of the consecutive explosions when an accident explosion occurs at any chamber. This paper aims to propose an procedure for calculation of the design loads for the chamber blast doors. Modeling considerations are drawn through analyzing the influences of the geometrical shapes and mechanical properties of rocks on the propagation of pressure wave along with the tunnels. Additionally, the design loads for the chamber blast doors in a newly-built underground ammunition facility are calculated based on the proposed procedure.

범용 2D MCAD 상에서 경계표현법을 이용한 위상 정보 추출 및 그 저장방식에 관한 연구 (A Study on Extraction and its Storage method of Topological Information from Common 2-D CAD Using The Boundary-Representation Method)

  • 홍상훈;한성영;김용연
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.25-34
    • /
    • 1999
  • In spite of the advance of 3D solid modeling technology, there are some distinct areas where 2D CAD S/W are still dominant, and more competent comparing with 3D CAD S/W. For example, in the manufacturing of 2D-shaped electrical parts, most related manufacturing tools have 2D geometric features by nature, and 3D solid models applied to these parts have substantial overheads. Nevertheless, most 2D CAD S/W have no topological inquiry services because they have no such information on their geometrical database inherently. Thus, it is needed to extract such information from 2D CAD database for developing more advanced application such as automated drafting/design S/W. In this paper, the extraction of topological information from 2D CAD has been performed in general way using concept of B-rep. A general extraction algorithm, data structure and meta file format for 2D topological object have been developed and successfully applied to the development of the automated lead frame die design system in Samsung Aerospace. it is also possible to provide a flexible, powerful topology-oriented functionality on any common 2D CAD S/W.

  • PDF