• Title/Summary/Keyword: Geometric trajectory generation

Search Result 6, Processing Time 0.019 seconds

Aerodynamic Characteristic and Reference Trajectory Design of A/L Phase for the Re-Entry Vehicle (재진입 비행체의 A/L 단계 공력특성과 기준궤적 설계)

  • Jang, Jang-Sik;Baek, Jo-Ha;Min, Chan-Oh;Kim, Jong-Hun;Lee, Dae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.753-760
    • /
    • 2008
  • The present study is concerned with aerodynamic characteristics and reference trajectory generation of Hope-X in Approach/Landing phase. To create reference trajectory generation in A/L phase, detailed informations on lift and drag coefficients of Hope-X must be provided. To obtain these informations, aerodynamic characteristics of Hope-X are analyzed using the commercial CFD code, Fluent. The A/L phase is conceptually divided into three sub-phases: the Steepglide Slope phase for stability of vehicle, the Flare Maneuver phase for safety landing, the Circular Flare for smooth connecting with these both phases. The reference trajectory is obtained by determination of flight-path angle through geometrical formulas with consideration of aerodynamic coefficient and dynamic characteristic.

Ruled Surface의 곡률이론을 이용한 새로운 로봇궤적제어기법

  • 김재희;김상철;유범상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.683-691
    • /
    • 1997
  • This paper presents a new robot trajectory generation method based on the curvatre theory of ruled surfacees. robot trajectory is represented as a ruled surface generated by the TCP (Tool center point ) and any one unit vector among the tool frame (usually denoted O, A,N). The curvature theory of ruled surfaces provides the robot control algorithm with the motion property oarameters. The proposed method eliminates the necessity of approximation technic of either joint or cartesian interpolation. This technic may give new methodology of precision robot control. Especially this is very efficient when the robot traces an analytical or form surface if the surface is geometrically modelled.

  • PDF

Geometric Kinematics and Applications of a Mobile Robot

  • Kim, Dong-Sung;Kwon, Wook-Hyun;Park, Hong-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.376-384
    • /
    • 2003
  • In this paper, the simple geometric kinematics of a three-wheeled holonomic mobile robot is proposed. Wheel architecture is developed for the holonomic mobile platform in order to provide omni-directional motions by three individually driven and steered wheels. Three types of basic motions are proposed for the path generation of the developed mobile robot. All paths of the mobile robot can be achieved through a combination of the proposed basic motion trajectories. The proposed method is verified through computer simulations and the developed mobile robot.

A Study on the real-time NURBS Interpolation using 2-stage interpolation (2중 보간법을 이용한 실시간 NURBS 보간방법에 관한 연구)

  • Park Jinho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.56-63
    • /
    • 2004
  • The real-time NURBS interpolation method using 2-stage interpolation is studied. The 2-stage interpolation method that compensates for interpolation errors within machine BLU is proposed. The interpolation result was filtered by an Acceleration/Jerk limitation equation. Through this 2-stage interpolation, both the interpolation error condition and the motion kinematics could be satisfied. Using computer simulation in which interpolation results are evaluated by a numerical iteration method, it is shown that the 2-stage interpolation algerian could interpolate target curves precisely with geometric and dynamic contentment. The proposed algorithm was implemented in the CNC simulator system and an experimental un was conducted to identify the real-time adaptation.

Note on Calculation of Cnoidal Wave Parameters (크노이드파의 매개변수 산정)

  • Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.227-232
    • /
    • 1995
  • A new evaluation procedure for calculating the Jacobian elliptic parameter is presented. This procedure is useful in calculating the trajectory for cnoidal wave generation. Upon specification of water depth, the wave height and either the wave period or the wavelength, the presented algorithm uses the Newton-Raphson method and the arithmetic and geometric-mean scales to calculate the profile directly, without trial and error procedures or look-up in tables. It is shown that the algorithm provides equally accurate result as the ad hoc methods previously used.

  • PDF

Generation of Indoor Network by Crowdsourcing (크라우드 소싱을 이용한 실내 공간 네트워크 생성)

  • Kim, Bo Geun;Li, Ki-Joune;Kang, Hae-Kyong
    • Spatial Information Research
    • /
    • v.23 no.1
    • /
    • pp.49-57
    • /
    • 2015
  • Due to high density of population and progress of high building construction technologies, the number of high buildings has been increasing. Several information services have been provided to figure out complex indoor structures of building such as indoor navigations and indoor map services. The most fundamental information for these services are indoor network information. Indoor network in building provides topological connectivity between spaces unlike geometric information of buildings. In order to make indoor network information, we have to edit network manually or derive network properties based on the geometric data of buildings. This process is not easy for complex buildings. In this paper, we suggest a method to generate indoor network automatically based on crowdsourcing. From the collected individual trajectories, we derive indoor network information with crowdsourcing. We validate our method with a sample set of trajectory data and the result shows that our method is practical if the indoor positioning technology is reasonably accurate.