• Title/Summary/Keyword: Geometric errors

Search Result 346, Processing Time 0.025 seconds

Geoid Determination in South Korea from a Combination of Terrestrial and Airborne Gravity Anomaly Data

  • Jekeli, Christopher;Yang, Hyo Jin;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.567-576
    • /
    • 2013
  • The determination of the geoid in South Korea is a national imperative for the modernization of height datums, specifically the orthometric height and the dynamic height, that are used to monitor hydrological systems and environments with accuracy and easy revision, if necessary. The geometric heights above a reference ellipsoid, routinely obtained by GPS, lead immediately to vertical control with respect to the geoid for hydrological purposes if the geoid height above the ellipsoid is known accurately. The geoid height is determined from gravimetric data, traditionally ground data, but in recent times also from airborne data. This paper illustrates the basic concepts for combining these two types of data and gives a preliminary performance assessment of either set or their combination for the determination of the geoid in South Korea. It is shown that the most critical aspect of the combination is the gravitational effect of the topographic masses above the geoid, which, if not properly taken into account, introduces a significant bias of about 8 mgal in the gravity anomalies, and which can lead to geoid height bias errors of up to 10 cm. It is further confirmed and concluded that achieving better than 5 cm precision in geoid heights from gravimetry remains a challenge that can be surmounted only with the proper combination of terrestrial and airborne data, thus realizing higher data resolution over most of South Korea than currently available solely from the airborne data.

Feature-based Disparity Correction for the Visual Discomfort Minimization of Stereoscopic Video Camera (입체영상의 시각 피로 최소화를 위한 특징기반 시차 보정)

  • Jung, Eun-Kyung;Kim, Chang-Il;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.77-87
    • /
    • 2011
  • In this paper, we propose a disparity correction technique to reduce the inherent visual discomfort while watching stereoscopic videos. The visual discomfort must be solved for commercial 3D display systems to provide natural stereoscopic videos to human eyes. The proposed disparity correction technique consists of horizontal and vertical disparity corrections. The horizontal disparity correction is implemented by controlling the depth budget of stereoscopic video using the geometric relations of a stereoscopic camera system. In addition, the vertical disparity correction is implemented by using a feature-based stereo matching algorithm. Conventional vertical disparity corrections have been done by only using camera calibration parameters, which still cause systematic errors in vertical disparities. In this paper, we minimize the vertical disparity as small as possible by using a feature-based correction algorithm. Through the comparisons of conventional feature-based correction algorithms, we analyze the performance of the proposed technique.

1/10,000 Scale Digital Mapping using High Resolution Satellite Images (고해상도 위성영상을 이용한 축척 1/10,000 수치지도 제작)

  • Lee, Byung-Hwan;Kim, Jeong-Hee;Park, Kyung-Hwan;Chung, Il-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.2
    • /
    • pp.11-23
    • /
    • 2000
  • The subjects of this study are to examine and to apply the methods of making 1 : 10,000 scale digital maps using Russian's 2 m resolution satellite images of Alternative and 8 m resolution stereo satellite images of MK-4 for the Kyoha area of Paju-city where aerial-photo surveying is not possible. A digital elevation model (DEM) was calculated from MK-4 images. With this DEM, the Alternative images were orthorectified. Ground control points (GCP) were acquired from GPS surveyings and were used to perform geometric corrections on Alternative images. From field investigation, thematic attributes are digitized on the monitor. RMS errors of the planar and vertical positions are estimated to ${\pm}0.4$ m and ${\pm}15$ m, respectively. The planar accuracy is better than an accuracy required by NGIS (national GIS) programs. Local information from field investigation was added and the resulting maps should be good as base maps for, such as, regional and urban plannings.

  • PDF

Image registration using outlier removal and triangulation-based local transformation (이상치 제거와 삼각망 기반의 지역 변환을 이용한 영상 등록)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.787-795
    • /
    • 2014
  • This paper presents an image registration using Triangulation-based Local Transformation (TLT) applied to the remaining matched points after elimination of the matched points with gross error. The corners extracted using geometric mean-based corner detector are matched using Pearson's correlation coefficient and then accepted as initial matched points only when they satisfy the Left-Right Consistency (LRC) check. We finally accept the remaining matched points whose RANdom SAmple Consensus (RANSAC)-based global transformation (RGT) errors are smaller than a predefined outlier threshold. After Delaunay triangulated irregular networks (TINs) are created using the final matched points on reference and sensed images, respectively, affine transformation is applied to every corresponding triangle and then all the inner pixels of the triangles on the sensed image are transformed to the reference image coordinate. The proposed algorithm was tested using KOMPSAT-2 images and the results showed higher image registration accuracy than the RANSAC-based global transformation.

An Evaluation of ETM+ Data Capability to Provide 'Forest-Shrub land-Range' Map (A Case Study of Neka-Zalemroud Region-Mazandaran-Iran)

  • Latifi Hooman;Olade Djafar;Saroee Saeed;jalilvand Hamid
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.403-406
    • /
    • 2005
  • In order to evaluate the Capability of ETM+ remotely- sensed data to provide 'Forest-shrub land-Rangeland' cover type map in areas near the timberline of northern forests of Iran, the data were analyzed in a portion of nearly 790 ha located in Neka-Zalemroud region. First, ortho-rectification process was used to correct the geometric errors of the image, yielding 0/68 and 0/69 pixels of RMS. error in X and Y axis, respectively. The original and panchromatic bands were fused using PANSHARP Statistical module. The ground truth map was made using 1 ha field plots in a systematic-random sampling grid, and vegetative form of trees, shrubs and rangelands was recorded as a criteria to name the plots. A set of channels including original bands, NDVI and IR/R indices and first components of PCI from visible and infrared bands, was used for classification procedure. Pair-wise divergence through CHNSEL command was used, In order to evaluate the separability of classes and selection of optimal channels. Classification was performed using ML classifier, on both original and fused data sets. Showing the best results of $67\%$ of overall accuracy, and 0/43 of Kappa coefficient in original data set. Due to the results represented above, it's concluded that ETM+ data has an intermediate capability to fulfill the spectral variations of three form- based classes over the study area.

  • PDF

Virtual Prototyping of Portable Consumer Electronic Products Based on HMI Functional Simulation (HMI 기능 시뮬레이션 기반 개인용 휴대전자제품의 가상시작)

  • Park, Hyung-Jun;Bae, Chae-Yeol;Moon, Hee-Cheol;Lee, Kwan-Heng
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.854-861
    • /
    • 2005
  • The functional behavior of a portable consumer electronic (PCE) product is nearly all expressed with human-machine interaction (HMI) tasks. Although physical prototyping and computer aided design (CAD) software can show the appearance of the product, they cannot properly reflect its functional behavior. In this paper, we propose a virtual prototyping (VP) system that incorporates virtual reality and HMI functional simulation in order to enables users to capture not only the realistic look of a PCE product but also its functional behavior. We obtain geometric part models of the product and their assembly and kinematics information with the help of CAD and reverse engineering tools, and visualize them with various display tools. We adopt state transition methodology to capture the HMI functional behavior of the product into a state transition chart, which is later used to construct a finite state machine (FSM) for the functional simulation of the product. The FSM plays an important role to control the transition between states of the product. The proposed VP system receives input events such as mouse clicks on buttons and switches of the virtual prototype model, and it reacts to the events based on the FSM by activating associated activities. The VP system provides the realistic visualization of the product and the vivid simulation of its functional behavior. It can easily allow users to perform functional evaluation and usability testing. Moreover, it can greatly reduce communication errors occurring in a typical product development process. A case study about VP of an MP3 player is given to show the usefulness of the proposed VP system.

  • PDF

A Study of an OMM System for Machined Spherical form Using the Volumetric Error Calibration of Machining Center (머시닝센터의 체적오차 보상을 통한 구면 가공형상 측정 OMM시스템 연구)

  • Kim, Sung-Chung;Kim, Ok-Hyun;Lee, Eung-Suk;Oh, Chang-Jin;Lee, Chan-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.98-105
    • /
    • 2001
  • The machining accuracy is affected by geometric, volumetric errors of the machine tools. To improve the product quality, we need to enhance the machining accuracy of the machine tools. To this point of view, measurement and inspection of finished part as error analysis of machine tools ahas been studied for last several decades. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the spherical surface manufacturing by modeling and compensation of volumetric error of the machine tool, 4) the system development of OMM without detaching work piece from a bed of machine tool after working, 5) the generation of the finished part profile by OMM. Furthermore, the output of OMM is compared with that of CMM, and verified the feasibility of the measurement system.

  • PDF

A Study on Gesture Recognition using Edge Orientation Histogram and HMM (에지 방향성 히스토그램과 HMM을 이용한 제스처 인식에 관한 연구)

  • Lee, Kee-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2647-2654
    • /
    • 2011
  • In this paper, the algorithm that recognizes the gesture by configuring the feature information obtained through edge orientation histogram and principal component analysis as low dimensional gesture symbol was described. Since the proposed method doesn't require a lot of computations compared to the existing geometric feature based method or appearance based methods and it can maintain high recognition rate by using the minimum information, it is very well suited for real-time system establishment. In addition, to reduce incorrect recognition or recognition errors that occur during gesture recognition, the model feature values projected in the gesture space is configured as a particular status symbol through clustering algorithm to be used as input symbol of hidden Markov models. By doing so, any input gesture will be recognized as the corresponding gesture model with highest probability.

Geometrical Feature-Based Detection of Pure Facial Regions (기하학적 특징에 기반한 순수 얼굴영역 검출기법)

  • 이대호;박영태
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.773-779
    • /
    • 2003
  • Locating exact position of facial components is a key preprocessing for realizing highly accurate and reliable face recognition schemes. In this paper, we propose a simple but powerful method for detecting isolated facial components such as eyebrows, eyes, and a mouth, which are horizontally oriented and have relatively dark gray levels. The method is based on the shape-resolving locally optimum thresholding that may guarantee isolated detection of each component. We show that pure facial regions can be determined by grouping facial features satisfying simple geometric constraints on unique facial structure. In the test for over 1000 images in the AR -face database, pure facial regions were detected correctly for each face image without wearing glasses. Very few errors occurred in the face images wearing glasses with a thick frame because of the occluded eyebrow -pairs. The proposed scheme may be best suited for the later stage of classification using either the mappings or a template matching, because of its capability of handling rotational and translational variations.

3D Simulation of Dental Implant Surgery Using Surgical Guide Stents (식립 보조도구를 이용한 3D 치아 임플란트 시술 시뮬레이션)

  • Park, Hyung-Wook;Kim, Myong-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.216-226
    • /
    • 2011
  • Surgeon dentists usually rely on their experiential judgments from patients' oral plaster casts and medical images to determine the positional and directional information of implant fixtures and to perform drilling tasks during dental implant surgical operations. This approach, however, may cause some errors and deteriorate the quality of dental implants. Computer-aided methods have been introduced as supportive tools to alleviate the shortcomings of the conventional approach. In this paper, we present an approach of 3D dental implant simulation which can provide the realistic and immersive experience of dental implant information. The dental implant information is primarily composed of several kinds of 3D mesh models obtained as follows. Firstly, we construct 3D mesh models of jawbones, teeth and nerve curves from the patient's dental images using software $Mimics^{TM}$. Secondly, we construct 3D mesh models of gingival regions from the patient's oral impression using a reverse engineering technique. Thirdly, we select suitable types of implant fixtures from fixture database and determine the positions and directions of the fixtures by using the 3D mesh models and the dental images with software $Simplant^{TM}$. Fourthly, from the geometric and/or directional information of the jawbones, the gingival regions, the teeth and the fixtures, we construct the 3D models of surgical guide stents which are crucial to perform the drilling operations with ease and accuracy. In the application phase, the dental implant information is combined with the tangible interface device to accomplish 3D dental implant simulation. The user can see and touch the 3D models related with dental implant surgery. Furthermore, the user can experience drilling paths to make holes where fixtures are implanted. A preliminary user study shows that the presented approach can be used to provide dental students with good educational contents. With future work, we expect that it can be utilized for clinical studies of dental implant surgery.