• Title/Summary/Keyword: Geometric entities

Search Result 34, Processing Time 0.026 seconds

Hybrid Representations for Enveloping Modeling in Gearing

  • Voznyuk, Roman
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.13-17
    • /
    • 2003
  • Hybrid method of representing geometric entities as combination of boundary (B-rep) and functional (F-rep) representations is presented which can be used as a basis of solid modeling kernel. It contains whole functionality of classic B-rep kernel, and also supports enveloping (sweep of solid body). Principles and keysolutions are considered. Example of a real task that comes from gearing is provided.

Constructing $G^1$ Quadratic B$\acute{e}$zier Curves with Arbitrary Endpoint Tangent Vectors

  • Gu, He-Jin;Yong, Jun-Hai;Paul, Jean-Claude;Cheng, Fuhua (Frank)
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • Quadratic B$\acute{e}$zier curves are important geometric entities in many applications. However, it was often ignored by the literature the fact that a single segment of a quadratic B$\acute{e}$zier curve may fail to fit arbitrary endpoint unit tangent vectors. The purpose of this paper is to provide a solution to this problem, i.e., constructing $G^1$ quadratic B$\acute{e}$zier curves satisfying given endpoint (positions and arbitrary unit tangent vectors) conditions. Examples are given to illustrate the new solution and to perform comparison between the $G^1$ quadratic B$\acute{e}$zier cures and other curve schemes such as the composite geometric Hermite curves and the biarcs.

Hull Form Optimization Based on From Parameter Design (Form Parameter Design 을 이용한 선형최적화)

  • Lee, Yeon-Seung;Choi, Young-Bok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.562-568
    • /
    • 2009
  • Hull form generation and variation methods to be mainly discussed in this study are based on the fairness optimized B-Spline form parameter curves (FOBFC). These curves can be used both as indirect modification function for variation and as geometric entities for hull form generation. The flexibility and functionality of geometric control technique play the most important role for the success of hull form optimization. This study shows the hydrodynamic optimization process and the characteristics of optimum design hull forms of a 14,000TEU containership and 60K LPG carrier. SHIPFLOW has been used as a CFD solver and FS-Framework as a geometric modeler and optimizer.

An Extension Method of IFC Model for Representing Design Information of Steel Bridge Members (강교 부재의 설계정보 표현을 위한 IFC 모델의 확장 방안)

  • Yi, Jin-Hoon;Huang, Meng-Gang;Lee, Ji-Hoon;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.524-531
    • /
    • 2008
  • A method for representing detailed design information of steel bridge member is proposed on the basis of the IFC model. As a first step, bridge related entities in the IFC-BRIDGE V2 and their functions are analyzed. In addition, design documents of steel bridge members are analyzed to extract information items that are not handled in the IFC-BRIDGE V2. It is recommended that several entities in the IFC-BRIDGE V2, such as ifcBridgeFibre, IfcBridgeReferenceLine, and IfcBridgeSection, should be properly relocated. In addition, IfcBridgeStiffener, IfcBridgeJointSystem, IfcBridgeDiaphragm, and IfcBridgeShearConnector are added as subtypes of IfcBridgeElementComponent for representing the stiffener, joint system, diaphragm, and shear connector, respectively. The added new entities inherit all attributes of IfcProduct which is linked with other resources: geometric representation, placement, material information, and so on. Thus, it is considered that a proposed in-depth IFC-BRIDGE model can be used more widely.

  • PDF

Parametric design을 위한 자동설계모듈 생성

  • 황선원;반갑수;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.359-364
    • /
    • 1993
  • As advanced method for the automatic generation of parametric models in computer-aided design systems is required for most of two-dimensional model which is represented as a set of geometric elements, and constr- aining scheme formulas. The development system uses geometirc constrainis and topology parameters which are derived from feature recognition and grouping the design entities into optimal ones from pre-designed drawings. The aim of this paper is to present guidelines for the application and development of parametric design modules for the standard parts in mechaniscal system, the basic constitutional part of mold base, and other 2D features.

Development of interactive design system for plastic injection mold using personal computer (PC를 이용한 사출금형 몰드 베이스의 대화식 설계 시스템 개발)

  • 반갑수;이석희;안희태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.181-185
    • /
    • 1990
  • In design of the plastic injection mold, most of drawings are composed of basic entities. It is very easy to produce many kinds of drawings by Group Technology. Group Technology is a technique In which part similarities are used to classify parts into part families according to either geometric shape and size or processing requirements. Almost data for the mold are decided during the assembly design. A system which shows a good interfaces between the design stage and producing part exploding Is developed using AutoCAD system and data conversion technique.

  • PDF

Divide and conquer algorithm for a voronoi diagram of simple curves

  • Kim, Deok-Soo;Hwang, Il-Kyu;Park, Bum-Joo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.691-700
    • /
    • 1994
  • Voronoi diagram of a set of geometric entities on a plane such as points, line segments, or arcs is a collection of Voronoi polygons associated with each entity, where Voronoi polygon of an entity is a locus of point which is closer to the associated entity than any other entity. Voronoi diagram is one of the most fundamental geometrical construct and well-known for its theoretical elegance and the wealth of applications. Various geometric problems can be solved with the aid of Voronoi diagram. For example, the maximum tool diameter of a milling cutter for rough cutting in a pocket can be easily found, and the pocketing tool path can be efficiently generated from Voronoi diagram. In PCB design, the design rule checking can be easily done via Voronoi diagram, too. This paper discusses an algorithm to construct Voronoi diagram of a simple polygon which consists of simple curves such as line segments as well as arcs in a plane with O(nlogn) time complexity by employing the divide and conquer scheme.

Offsetting Operations in Non-manifold Geometric Modeling (비다양체 모델의 옵셋 기능 개발)

  • 이상헌
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • This paper introduces non-manifold offsetting operations, which add or remove a uniform thickness from a given non-manifold model. Since these operations can be applied to not only solids but also wireframe or sheet objects, they are potentially useful for pipeline modeling, sheet metal and plastic part modeling, tolerance analysis, clearance checking, constant-radius rounding and filleting of solids, converting of abstracted models to solids, HC too1 path generation and so on. This paper describes mathematical properties and algorithms for non-manifold offsetting. In this algorithm, a sufficient set of tentative faces are generated first by offsetting all or a subset of the vertices, edges and faces of the non-manifold model. And then they are merged into a model using the Boolean operations. Finally topological entities which are within offset distance are removed. The partially modified offsetting algorithms for wireframes or sheets are also discussed in order to provide more practical offset models.

  • PDF

Compact Boundary Representation and Generalized Eular Operators for Non-manifold Geometric Modeling (비다양체 형상 모델링을 위한 간결한 경계 표현 및 확장된 오일러 작업자)

  • 이상헌;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-19
    • /
    • 1996
  • Non-manifold topological representations can provide a single unified representation for mixed dimensional models or cellular models and thus have a great potential to be applied in many application areas. Various boundary representations for non-manifold topology have been proposed in recent years. These representations are mainly interested in describing the sufficient adjacency relationships and too redundant as a result. A model stored in these representations occupies too much storage space and is hard to be manipulated. In this paper, we proposed a compact hierarchical non-manifold boundary representation that is extended from the half-edge data structure for solid models by introducing the partial topological entities to represent some non-manifold conditions around a vertex, edge or face. This representation allows to reduce the redundancy of the existing schemes while full topological adjacencies are still derived without the loss of efficiency. To verify the statement above, the storage size requirement of the representation is compared with other existing representations and present some main procedures for querying and traversing the representation. We have also implemented a set of the generalized Euler operators that satisfy the Euler-Poincare formula for non-manifold geometric models.

  • PDF

Development of an Extension Model based on Three Dimensional Wireframe Model for KOSDIC Format in the Construction Field (건설 분야 도면정보 교환 표준을 위한 3차원 와이어프레임 기반의 확장 모델 개발에 관한 연구)

  • Kim I.H.;Seo J.C.;Won J.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.3
    • /
    • pp.179-187
    • /
    • 2005
  • The usage of mixed 2D and 3D CAD data of commercial CAD systems is required in the construction practice. Sometimes 3D wireframe model is required by end-users when 2D CAD data is delivered. However, current KOSDIC can not represent 3D CAD data, because it has been developed as a 2D drawing delivery standard. Therefore, this study is to provide exchange and sharing of mixed 2D and 3D CAD data that add 3D wireframe model in the KOSDIC. To achieve this purpose, the authors have investigated the 3D CAD entities of commercial CAD systems, and have analyzed STEP standards providing 3D wireframe model. The result, the authors have extracted 3D CAD common entities based wireframe model which shall be added in the KOSDIC. This study can be beneficial by using the developed data model for heterogeneous CAD systems, and by providing the representation of mixed 2D and 3D CAD data in construction practice such as GIS, piping system, and so forth.