• Title/Summary/Keyword: Geometric distribution

Search Result 680, Processing Time 0.027 seconds

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

Radiation Absorbed Dose Calculation Using Planar Images after Ho-166-CHICO Therapy (Ho-166-CHICO 치료 후 평면 영상을 이용한 방사선 흡수선량의 계산)

  • 조철우;박찬희;원재환;왕희정;김영미;박경배;이병기
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 1998
  • Ho-l66 was produced by neutron reaction in a reactor at the Korea Atomic Energy Institute (Taejon, Korea). Ho-l66 emits a high energy beta particles with a maximum energy of 1.85 MeV and small proportion of gamma rays (80 keV). Therefore, the radiation absorbed dose estimation could be based on the in-vivo quantification of the activity in tumors from the gamma camera images. Approximately 1 mCi of Ho-l66 in solution was mixed into the flood phantom and planar scintigraphic images were acquired with and without patient interposed between the phantom and scintillation camera. Transmission factor over an area of interest was calculated from the ratio of counts in selected regions of the two images described above. A dual-head gamma camera(Multispect2, Siemens, Hoffman Estates, IL, USA) equipped with medium energy collimators was utilized for imaging(80 keV${\pm}$10%). Fifty-nine year old female patient with hepatoma was enrolled into the therapeutic protocol after the informed consent obtained. Thirty millicuries(110MBq) of Ho-166-CHICO was injected into the right hepatic arterial branch supplying hepatoma. When the injection was completed, anterior and posterior scintigraphic views of the chest and pelvic regions were obtained for 3 successive days. Regions of interest (ROIs) were drawn over the organs in both the anterior and posterior views. The activity in those ROIs was estimated from geometric mean, calibration factor and transmission factors. Absorbed dose was calculated using the Marinelli formula and Medical Internal Radiation Dose (MIRD) schema. Tumor dose of the patient treated with 1110 MBq(30 mCi) Ho-l66 was calculated to be 179.7 Gy. Dose distribution to normal liver, spleen, lung and bone was 9.1, 10.3, 3.9, 5.0 % of the tumor dose respectively. In conclusion, tumor dose and absorbed dose to surrounding structures were calculated by daily external imaging after the Ho-l66 therapy for hepatoma. In order to limit the thresholding dose to each surrounding organ, absorbed dose calculation provides useful information.

  • PDF

Dose Distribution of Co-60 Photon Beam in Total Body Irradiation (Co-60에 의한 전신조사시 선량분포)

  • Kang, Wee-Saing
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.109-120
    • /
    • 1991
  • Total body irradiation is operated to irradicate malignant cells of bone marrow of patients to be treated with bone marrow transplantation. Field size of a linear accelerator or cobalt teletherapy unit with normal geometry for routine technique is too small to cover whole body of a patient. So, any special method to cover patient whole body must be developed. Because such environments as room conditions and machine design are not universal, some characteristic method of TBI for each hospital could be developed. At Seoul National University Hospital, at present, only a cobalt unit is available for TBI because source head of the unit could be tilted. When the head is tilted outward by 90$^{\circ}$, beam direction is horizontal and perpendicular to opposite wall. Then, the distance from cobalt source to the wall was 319 cm. Provided that the distance from the wall to midsagittal plane of a patient is 40cm, nominal field size at the plane(SCD 279cm) is 122cm$\times$122cm but field size by measurement of exposure profile was 130cm$\times$129cm and vertical profile was not symmetric. That field size is large enough to cover total body of a patient when he rests on a couch in a squatting posture. Assuming that average lateral width of patients is 30cm, percent depth dose for SSD 264cm and nominal field size 115.5cm$\times$115.5cm was measured with a plane-parallel chamber in a polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom of size 25cm wide and 30cm deep. Depth of dose maximum, surface dose and depth of 50% dose were 0.3cm, 82% and 16.9cm, respectively. A dose profile on beam axis for two opposing beams was uniform within 10% for mid-depth dose. Tissue phantom ratio with reference depth 15cm for maximum field size at SCD 279cm was measured in a small polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom with TLD chips inserted in holes on the largest coronal plane was bilaterally irradiated by 15 minute in each direction by cobalt beam aixs in line with the cross line of the coronal plane and contact surface of sections No. 27 and 28. When doses were normalized with dose at mid-depth on beam axis, doses in head/neck, abdomen and lower lung region were close to reference dose within $\pm$ 10% but doses in upper lung, shoulder and pelvis region were lower than 10% from reference dose. Particulaly, doses in shoulder region were lower than 30%. On this result, the conclusion such that under a geometric condition for TBI with cobalt beam as SNUH radiotherapy departement, compensators for head/neck and lung shielding are not required but boost irradiation to shoulder is required could be induced.

  • PDF

The Dosimetric Data of 10 MV Linear Accelerator Photon Beam for Total Body Irradiation (전신 방사선조사를 위한 10MV 선형가속기의 선량측정)

  • Ahn Sung Ja;Kang Wee-Saing;Park Seung Jin;Nam Taek Keun;Chung Woong Ki;Nah Byung Sik
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.225-232
    • /
    • 1994
  • Purpose : This study was to obtain the basic dosimetric data using the 10 MV X-ray for the total body irradiation. Materials and Methods : A linear accelerator photon beam is planned to be used as a radiation source for total body irradiation (TBI) in Chonnam University Hospital. The planned distance from the target to the midplane of a patient is 360cm and the maximum geometric field size is 144cm x 144cm. Polystyrene phantom sized $30{\times}30{\times}30.2cm^3$ and consisted of several sheets with various thickness, and a parallel plate ionization chamber were used to measure surface dose and percent depth dose (PDD) at 345cm SSD, and dose profiles. To evaluate whether a beam modifier is necessary for TBI, dosimetry in build up region was made first with no modifier and next with an 1cm thick acryl plate 20cm far from the polystyrene phantom surface. For a fixed sourec-chamber distance, output factors were measured for various depth. Results : As any beam modifier was not on the way of radiation of 10MV X-ray, the $d_{max}$ and surface dose was 1.8cm and $61\%$, respectively, for 345cm SSD. When an 1cm thick acryl plate was put 20cm far from polystyrene phantom for the SSD, the $d_{max}$ and surface dose were 0.8cm and $94\%$, respectively. With acryl as a beam spoiler, the PDD at 10cm depth was $78.4\%$ and exit dose was a little higher than expected dose at interface of exit surface. For two-opposing fields for a 30cm phantom thick phantom, the surface dose and maximum dose relative to mid-depth dose in our experiments were $102.5\%$ and $106.3\%$, respectively. The off-axis distance of that point of $95\%$ of beam axis dose were 70cm on principal axis and 80cm on diagonal axis. Conclusion: 1. To increase surface dose for TBI by 10MV X-ray at 360cm SAD, 1cm thick acrylic spoiler was sufficient when distance from phantom surface to spoiler was 20cm. 2. At 345cm SSD, 10MV X-ray beam of full field produced a satisfiable dose uniformity for TBI within $7\%$ in the phantom of 30cm thickness by two-opposing irradiation technique. 3. The uniform dose distribution region was 67cm on principal axis of the beam and 80cm on diagonal axis from beam axis. 4. The output factors at mid-point of various thickness revealed linear relation with depth, and it could be applicable to practical TBI.

  • PDF

Comparison of Electrical Signal Properties about Top Electrode Size on Photoconductor Film (광도전체 필름 상부 전극크기에 따른 전기적 신호 특성 비교)

  • Kang, Sang-Sik;Jung, Bong-Jae;Noh, Si-Cheul;Cho, Chang-Hoon;Yoon, Ju-Sun;Jeon, Sung-Pyo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.93-96
    • /
    • 2011
  • Currently, the development of direct conversion radiation detector using photoconductor materials is progressing in widely. Among of theses photoconductor materials, mercuric iodide compound than amorphous selenium has excellent absorption and sensitivity of high energy radiation. Also, the detection efficiency of signal generated in photoconductor film varies by electric filed and geometric distribution according to top-bottom electrode size. Therefore, in this work, the x-ray detection characteristics are investigated about the size of top electrode in $HgI_2$ photoconductor film. For sample fabrication, to solve the problem that is difficult to make a large area film, we used the spatial paste screen-print method. And the sample thickness is $150{\mu}m$ and an film area size is $3cm{\times}3cm$ on ITO-coated glass substrate. ITO(Indium-Tin-Oxide) electrode was used as top electrode using a magnetron sputtering system and each area is $3cm{\times}3cm$, $2cm{\times}2cm$ and $1cm{\times}1cm$. From experimental measurement, the dark current, sensitivity and SNR of the $HgI_2$ film are obtained from I-V test. From the experimental results, it shows that the sensitivity increases in accordance with the area of the electrode but the SNR is decreased because of the high dark current. Therefore, the optimized size of electrode is importance for the development of photoconductor based x-ray imaging detector.

DEVELOPMENT OF SAFETY-BASED LEVEL-OF-SERVICE CRITERIA FOR ISOLATED SIGNALIZED INTERSECTIONS (독립신호 교차로에서의 교통안전을 위한 서비스수준 결정방법의 개발)

  • Dr. Tae-Jun Ha
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.3-32
    • /
    • 1995
  • The Highway Capacity Manual specifies procedures for evaluating intersection performance in terms of delay per vehicle. What is lacking in the current methodology is a comparable quantitative procedure for ass~ssing the safety-based level of service provided to motorists. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections based on the relative hazard of alternative intersection designs and signal timing plans. Conflict opportunity models were developed for those crossing, diverging, and stopping maneuvers which are associated with left-turn and rear-end accidents. Safety¬based level-of-service criteria were then developed based on the distribution of conflict opportunities computed from the developed models. A case study evaluation of the level of service analysis methodology revealed that the developed safety-based criteria were not as sensitive to changes in prevailing traffic, roadway, and signal timing conditions as the traditional delay-based measure. However, the methodology did permit a quantitative assessment of the trade-off between delay reduction and safety improvement. The Highway Capacity Manual (HCM) specifies procedures for evaluating intersection performance in terms of a wide variety of prevailing conditions such as traffic composition, intersection geometry, traffic volumes, and signal timing (1). At the present time, however, performance is only measured in terms of delay per vehicle. This is a parameter which is widely accepted as a meaningful and useful indicator of the efficiency with which an intersection is serving traffic needs. What is lacking in the current methodology is a comparable quantitative procedure for assessing the safety-based level of service provided to motorists. For example, it is well¬known that the change from permissive to protected left-turn phasing can reduce left-turn accident frequency. However, the HCM only permits a quantitative assessment of the impact of this alternative phasing arrangement on vehicle delay. It is left to the engineer or planner to subjectively judge the level of safety benefits, and to evaluate the trade-off between the efficiency and safety consequences of the alternative phasing plans. Numerous examples of other geometric design and signal timing improvements could also be given. At present, the principal methods available to the practitioner for evaluating the relative safety at signalized intersections are: a) the application of engineering judgement, b) accident analyses, and c) traffic conflicts analysis. Reliance on engineering judgement has obvious limitations, especially when placed in the context of the elaborate HCM procedures for calculating delay. Accident analyses generally require some type of before-after comparison, either for the case study intersection or for a large set of similar intersections. In e.ither situation, there are problems associated with compensating for regression-to-the-mean phenomena (2), as well as obtaining an adequate sample size. Research has also pointed to potential bias caused by the way in which exposure to accidents is measured (3, 4). Because of the problems associated with traditional accident analyses, some have promoted the use of tqe traffic conflicts technique (5). However, this procedure also has shortcomings in that it.requires extensive field data collection and trained observers to identify the different types of conflicts occurring in the field. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections that would be compatible and consistent with that presently found in the HCM for evaluating efficiency-based level of service as measured by delay per vehicle (6). The intent was not to develop a new set of accident prediction models, but to design a methodology to quantitatively predict the relative hazard of alternative intersection designs and signal timing plans.

  • PDF

A Study on the Concentration of Nanoparticles and Heavy Metals in Indoor/Outdoor Air in a University Administrative Public Office (대학교 행정실 실내 외 공기 중 나노입자와 중금속 농도에 관한 연구)

  • Choi, Su-Hyeon;Im, Ji-Young;Park, Hee-Jin;Chung, Eun-Kyung;Kim, Jong-Oh;Son, Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.493-502
    • /
    • 2012
  • Objectives: The purpose of this study is to investigate the mass concentration of nanoparticles and understand the characteristics of elements of heavy metal concentrations within nanoparticles in the air using Micro-Orifice Uniform Deposit Impactor Model-110 (MOUDI-110), based on indoor and outdoor air. Methods: This Study sampled nanoparticles using MOUDI-110 indoors (office) and outdoors at S University in Asan, Korea in order to reveal the concentration of nanoparticles in the air. Sampling continued for nine months (10 times indoors and 14 times outdoors) from March to November 2010. Mass concentrations of nanoparticle and concentrations of heavy metals (Al, Mn, Zn, Ni, Cu, Cr, Pb) were analyzed. Results: Indoors, geometric mean concentration of nanoparticles ranged in size from 0.056 ${\mu}m$ to 0.10 ${\mu}m$ and those of 0.056 ${\mu}m$ or less recorded 0.929 ${\mu}g/m^3$ and 1.002 ${\mu}g/m^3$, respectively. On the other hand, the levels were lower outdoors with 0.819 ${\mu}g/m^3$ and 0.597 ${\mu}g/m^3$. Mann-Whitney U tests showed that the difference between the indoors and the outdoors was statistically meaningful in terms of particles of 0.056 ${\mu}m$ or less (p<0.05) in size. These results are possibly influenced by the use of printers and duplicators as the factor that increased the concentration of nanoparticles. In seasonal concentration distribution, the level was higher during the summer compared to in the autumn. Those of 0.056 ${\mu}m$ or less in size presented a statistically meaningful difference during the summer (p<0.05). These results may be influenced by photochemical event as the factor that makes the levels high. Regarding zinc, among the other heavy metals, the fine particles ranged in size from 0.056 ${\mu}m$ to 0.10 ${\mu}m$ and those of 0.056 ${\mu}m$ or less recorded 1.699 $ng/m^3$ and 1.189 $ng/m^3$ in the outdoors. In the indoors, the levels were lower, with 0.745 $ng/m^3$ and 0.617 $ng/m^3$. Cr and Ni at the size of 0.056 ${\mu}m$ or less, both of which have been known to pose severe health effects, recorded higher concentrations indoors with 0.736 $ng/m^3$ and 0.177 $ng/m^3$, compared to 0.444 $ng/m^3$ and 0.091 $ng/m^3$ outdoors. By season, Zn, Ni, Cu and Pb posted a high level of indoor concentration during the fall. As for Cr, the level of concentration indoors was higher than outdoors both during the summer and the autumn. Conclusion: This study indicates the result of an examination of nano-sized particles and heavy metal concentrations. It will provide useful data for the determination of basic nanoparticle standards in the future.

Diurnal and Seasonal Variations of the Radon Progeny Concentrations in the open Atmosphere and the Influence of Meteorological Parameters (대기중 라돈자핵종 농도의 일일 및 계절적 변화와 기상인자가 미치는 영향)

  • Lee, Dong-Myung;Kim, Chang-Kyu;Rho, Byung-Hwan;Lee, Seung-Chan;Kang, Hee-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.4
    • /
    • pp.207-216
    • /
    • 2000
  • Continuous measurements of radon progeny concentrations in the open atmosphere and measurements of meteorological parameters were performed in Tajeon, using a continuous gross alpha/beta aerosol monitor and a weather measuring equipment between July 1999 and July 2000. These data were analyzed for half-hourly, daily, and seasonal variations. The distribution of daily averaged equilibrium equivalent radon concentration$(EEC_{Rn})$ had an arithmetic mean value of $11.3{\pm}5.86Bqm^{-3}$ with the coefficient of variation of about 50% and the geometric mean was $10.3Bqm^{-3}$. The $EEC_{Rn}$ varies between 0.83 and $43.3Bqm^{-3}$, depending on time of day and weather conditions. Half-hourly averaged data indicated a diurnal pattern with the outdoor $EEC_{Rn}$ reaching a maximum at sunrise and a minimum at sunset. The pattern of the seasonal variation of the $EEC_{Rn}$ in Taejon had a tendency of minimum concentration occurring in the summer(July) and maximum concentration occurring in the late autumn(November). But the seasonal variation of the $EEC_{Rn}$ is expect to vary greatly from place to place. The outdoor $EEC_{Rn}$ was highly dependent on the local climate features. Particularly the $EEC_{Rn}$an rapidly drops less than $5Bqm^{-3}$ in case of blowing heavily higher than wind speed of $6msec^{-1}$, reversely the days with more than $30Bqm^{-3}$ were at a calm weather condition with the wind speed of lower than $1msec^{-1}$.

  • PDF

Improvement of GPS positioning accuracy by static post-processing method (정적 후처리방식에 의한 GPS의 측위정도 개선)

  • 김민선;신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.251-261
    • /
    • 2003
  • To measure the GPS position accuracy and its distribution according to the length of the baseline, 30 minutes to 24 hours observations at the fixed location were conducted with two GPS receivers (Ll, 12 channels) on May 29 to June 2, 2002. The GPS data received at the reference station, the rover station and the ordinary times GPS observation station operated by the National Geography Institute in Korea were processed in kinematic and static post-processing methods with a post -processing software. The results obtained are summarized as follows: 1. The number of the satellite that could be observed continuously more than six hours was 16 and most of these satellites were positioned at east-west direction on May 31, 2002. The number of the satellite observed and the geometric dilution of precision (GDOP) determined by the average of every 10 minute for the day were 8 and 3.89, respectively. 2. Both the average GPS positions before and after post-processing were shifted (standalone: 1.17 m, post -processing: 0.43m) to the south and west. The twice distance root mean square (2drms) measured with standalone was 6.65m. The 2drms could be reduced to 33.8% (standard deviation 0=17.2) and 5.3% (0=2.2) of standalone by the kinematic and the static post-processing methods, respectively. 3. The relationship between the length of the baseline x (km) and the 2drms y (m) obtained by the static post-processing method was y=0.00l6x+0.006 $(R^2=0.87)$. In the case of the positioning with the static post-processing method using the GPS receiver, it was found that a positioning within 20cm 2drms was possible when the length of the baseline was less than 100km and the receiving time of the GPS is more than 30 minutes.

Deformation History of Precambrian Metamorphic Rocks in the Yeongyang-Uljin Area, Korea (영양-울진 지역 선캠브리아기 변성암류의 변형작용사)

  • Kang Ji-Hoon;Kim Nam Hoon;Park Kye-Hun;Song Yong Sun;Ock Soo-Seok
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.179-190
    • /
    • 2004
  • Precambrian metamorphic rocks of Yeongyang-Uljin area, which is located in the eastern part of Sobaegsan Massif, Korea, are composed of Pyeonghae, Giseong, Wonnam Formations and Hada leuco granite gneisses. These show a zonal distribution of WNW-ESE trend, and are intruded by Mesozoic igneous rocks and are unconformably overlain by Mesozoic sedimentary rocks. This study clarifies the deformation history of Precambrian metamorphic rocks after the formation of gneissosity or schistosity on the basis of the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structures of this area experienced at least four phases of deformation i.e. ductile shear deformation, one deformation before that, at least two deformations after that. (1) The first phase of deformation formed regional foliations and WNW-trending isoclinal folds with subhorizontal axes and steep axial planes dipping to the north. (2) The second phase of deformation occurred by dextral ductile shear deformation of top-to-the east movement, forming stretching lineations of E-W trend, S-C mylonitic structure foliations, and Z-shaped asymmetric folds. (3) The third phase deformation formed I-W trending open- or kink-type recumbent folds with subhorizontal axes and gently dipping axial planes. (4) The fourth phase deformation took place under compression of NNW-SSE direction, forming ENE-WSW trending symmetric open upright folds and asymmetric conjugate kink folds with subhorizontal axes, and conjugate faults thrusting to the both NNW and SSE with drag folds related to it. These four phases of deformation are closely connected with the orientation of regional foliation in the Yeongyang-Uljin area. 1st deformation produced regional foliation striking WNW and steeply dipping to the north, 2nd deformation locally change the strike of regional foliation into N-S direction, and 3rd and 4th deformations locally change dip-angle and dip-direction of regional foliation.