• Title/Summary/Keyword: Geometric calibration

Search Result 180, Processing Time 0.025 seconds

Design of a non-contact type displacement measurement system based on optical triangulation method (광삼각법에 의한 비접촉식 변위측정계의 설계)

  • 이재윤;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1030-1035
    • /
    • 1992
  • This paper presents a non-contact type displacement sensor designed based on optical triangulation method. The optical principles of the sensor are described in detail with aids of paraxial geometric optics. A prototype sensor is designed and fabricated by using modern optoelectronic hardware. Its measuring performances are evaluated and discussed through a series of calibration processes.

Synthesis of the Measurement System on the Machine Tool (공작기계 상에서의 측정시스템의 설계)

  • Chung, Sung-Chong;Kim, Kyung-Don
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.63-68
    • /
    • 1999
  • A 2$\frac{1}{2}$ dimensional measurement and inspection system realized on the machine tool using a touch trigger probe and measuring G codes is synthesized in this paper. Measuring G codes have been constructed according to geometric farms, precision attributes, relationships between two parts, datum hierarchies, and relevant technological data by using measuring arguments. Algorithms far calibration and compensation of measuring errors are proposed to ensure the measuring accuracy by using a laser interferometer and ring gauges. Classification of feed rates according to the objectives of movement makes it possible to reduce measuring time and also implement collision-free measurement. Experiments are conducted to verify the validity and effectiveness of proposed methods.

  • PDF

A Study on the Detecting Method of Intercept Violation Vehicles Using an Image Detection Techniques (영상검지기법을 활용한 끼어들기 위반차량 검지 방법에 관한 연구)

  • Kim, Wan-Ki;Ryu, Boo-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.164-170
    • /
    • 2008
  • This research was verified detection way of intercept vehicles and performance evaluation after system installation using image detector as detection way of ground installation. By image recognition algorithm was on the trace of moving orbit of violation vehicles for detection way of intercept vehicles. When moving orbit is located special site, utilized geometric image calibration and DC-notch filter. These are cognitive system of license plate by making signal. Then, Bright Evidence Detection and Dark Evidence Detection were applied to after mixing. It is applied to way of Backward tracking for detection way of intercept vehicles. After the field evaluation of developed system, it should be analyzed the more high than recognition rate of minimum standards 80%. It should rise in the estimation of the site applicability is highly from now.

Geometric analysis of mobile mapping images sequence

  • Kang, Zhizhong;Zhang, Zuxun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.183-185
    • /
    • 2003
  • Spatially referenced mobile mapping (MM) images contain rich information of man-made objects , e.g. road centerlines, buildings, light poles, traffic signs ,billboards and line trees etc. Therefore, the applications in transportation, urban 3D reconstruction, utility management are implemented increasingly. It’s a fundamental issue lies in MM image process that how to orient this image in the object space including interior orientation of camera and the exterior orientation of image. In this paper, the algorithm of automatic acquirement of DC (Digital Camera) parameters based on MM images is illustrated. And then, the mapping between image space and object space for MM images is described.

  • PDF

Signal Compensation of LiDAR Sensors and Noise Filtering (LiDAR 센서 신호 보정 및 노이즈 필터링 기술 개발)

  • Park, Hong-Sun;Choi, Joon-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.334-339
    • /
    • 2019
  • In this study, we propose a compensation method of raw LiDAR data with noise and noise filtering for signal processing of LiDAR sensors during the development phase. The raw LiDAR data include constant errors generated by delays in transmitting and receiving signals, which can be resolved by LiDAR signal compensation. The signal compensation consists of two stage. First one is LiDAR sensor calibration for a compensation of geometric distortion. Second is walk error compensation. LiDAR data also include fluctuation and outlier noise, the latter of which is removed by data filtering. In this study, we compensate for the fluctuation by using the Kalman filter method, and we remove the outlier noise by applying a Gaussian weight function.

Automatic indoor progress monitoring using BIM and computer vision

  • Deng, Yichuan;Hong, Hao;Luo, Han;Deng, Hui
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.252-259
    • /
    • 2017
  • Nowadays, the existing manual method for recording actual progress of the construction site has some drawbacks, such as great reliance on the experience of professional engineers, work-intensive, time consuming and error prone. A method integrating computer vision and BIM(Building Information Modeling) is presented for indoor automatic progress monitoring. The developed method can accurately calculate the engineering quantity of target component in the time-lapse images. Firstly, sample images of on-site target are collected for training the classifier. After the construction images are identified by edge detection and classifier, a voting algorithm based on mathematical geometry and vector operation will divide the target contour. Then, according to the camera calibration principle, the image pixel coordinates are conversed into the real world Coordinate and the real coordinates would be corrected with the help of the geometric information in BIM model. Finally, the actual engineering quantity is calculated.

  • PDF

Simulation of TOA Visible Radiance for the Ocean Target and its Possible use for Satellite Sensor Calibration (해양 표적을 이용한 대기 상단 가시영역에서의 복사휘도 모의와 위성 센서 검보정에의 활용 가능성 연구)

  • Kim, Jung-Gun;Sohn, Byung-Ju;Chung, Eui-Seok;Chun, Hyoung-Wook;Suh, Ae-Sook;Kim, Kum-Lan;Oh, Mi-Lim
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.535-549
    • /
    • 2008
  • Vicarious calibration for the satellite sensor relies on simulated TOA (Top-of-Atmosphere) radiances over various targets. In this study, TOA visible radiance was calculated over ocean targets which are located in five different regions over the Indian and Pacific ocean, and its possible use for the satellite sensor calibration was examined. TOA radiances are simulated with the 6S radiative transfer model for the comparison with MODIS/Terra and SeaWiFS measurements. Geometric angles and sensor characteristics of the reference satellites were taken into account for the simulation. AOT (Aerosol Optical Thickness) from MODIS/Terra, pigment concentrations from Sea WiFS, and ozone amount from OMI measurements were used as inputs to the model. Other atmospheric input parameters such as surface wind and total column water vapor were taken from NCEP/NCAR reanalysis data. The 5-day averaged radiances over all targets show that the percent differences between simulated and observed radiances are within about ${\pm}5%$ in year 2005, indicating that the calculated radiances are in good agreement with satellite measurements. It has also been shown that the algorithm can produce the SeaWiFS radiances within about ${\pm}5%$ uncertainty range. It has been suggested that the algorithm can be used as a tool for calibrating the VIS bands within about 5% uncertainty range.

A Study on the Construction of Near-Real Time Drone Image Preprocessing System to use Drone Data in Disaster Monitoring (재난재해 분야 드론 자료 활용을 위한 준 실시간 드론 영상 전처리 시스템 구축에 관한 연구)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • Recently, due to the large-scale damage of natural disasters caused by global climate change, a monitoring system applying remote sensing technology is being constructed in disaster areas. Among remote sensing platforms, the drone has been actively used in the private sector due to recent technological developments, and has been applied in the disaster areas owing to advantages such as timeliness and economical efficiency. This paper deals with the development of a preprocessing system that can map the drone image data in a near-real time manner as a basis for constructing the disaster monitoring system using the drones. For the research purpose, our system is based on the SURF algorithm which is one of the computer vision technologies. This system aims to performs the desired correction through the feature point matching technique between reference images and shot images. The study area is selected as the lower part of the Gahwa River and the Daecheong dam basin. The former area has many characteristic points for matching whereas the latter area has a relatively low number of difference, so it is possible to effectively test whether the system can be applied in various environments. The results show that the accuracy of the geometric correction is 0.6m and 1.7m respectively, in both areas, and the processing time is about 30 seconds per 1 scene. This indicates that the applicability of this study may be high in disaster areas requiring timeliness. However, in case of no reference image or low-level accuracy, the results entail the limit of the decreased calibration.

Feature-based Disparity Correction for the Visual Discomfort Minimization of Stereoscopic Video Camera (입체영상의 시각 피로 최소화를 위한 특징기반 시차 보정)

  • Jung, Eun-Kyung;Kim, Chang-Il;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.77-87
    • /
    • 2011
  • In this paper, we propose a disparity correction technique to reduce the inherent visual discomfort while watching stereoscopic videos. The visual discomfort must be solved for commercial 3D display systems to provide natural stereoscopic videos to human eyes. The proposed disparity correction technique consists of horizontal and vertical disparity corrections. The horizontal disparity correction is implemented by controlling the depth budget of stereoscopic video using the geometric relations of a stereoscopic camera system. In addition, the vertical disparity correction is implemented by using a feature-based stereo matching algorithm. Conventional vertical disparity corrections have been done by only using camera calibration parameters, which still cause systematic errors in vertical disparities. In this paper, we minimize the vertical disparity as small as possible by using a feature-based correction algorithm. Through the comparisons of conventional feature-based correction algorithms, we analyze the performance of the proposed technique.

3D View Controlling by Using Eye Gaze Tracking in First Person Shooting Game (1 인칭 슈팅 게임에서 눈동자 시선 추적에 의한 3차원 화면 조정)

  • Lee, Eui-Chul;Cho, Yong-Joo;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1293-1305
    • /
    • 2005
  • In this paper, we propose the method of manipulating the gaze direction of 3D FPS game's character by using eye gaze detection from the successive images captured by USB camera, which is attached beneath HMD. The proposed method is composed of 3 parts. In the first fart, we detect user's pupil center by real-time image processing algorithm from the successive input images. In the second part of calibration, the geometric relationship is determined between the monitor gazing position and the detected eye position gazing at the monitor position. In the last fart, the final gaze position on the HMB monitor is tracked and the 3D view in game is control]ed by the gaze position based on the calibration information. Experimental results show that our method can be used for the handicapped game player who cannot use his (or her) hand. Also, it can increase the interest and immersion by synchronizing the gaze direction of game player and that of game character.

  • PDF