• Title/Summary/Keyword: Geometric accuracy

Search Result 832, Processing Time 0.027 seconds

ACCURACY ASSESSMENT BY REFINING THE RATIONAL POLYNOMIALS COEFFICIENTS(RPCs) OF IKONOS IMAGERY

  • LEE SEUNG-CHAN;JUNG HYUNG-SUP;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.344-346
    • /
    • 2004
  • IKONOS 1m satellite imagery is particularly well suited for 3-D feature extraction and 1 :5,000 scale topographic mapping. Because the image line and sample calculated by given RPCs have the error of more than 11m, in order to be able to perform feature extraction and topographic mapping, rational polynomial coefficients(RPCs) camera model that are derived from the very complex IKONOS sensor model to describe the object-image geometry must be refined by several Ground Control Points(GCPs). This paper presents a quantitative evaluation of the geometric accuracy that can be achieved with IKONOS imagery by refining the offset and scaling factors of RPCs using several GCPs. If only two GCPs are available, the offsets and scale factors of image line and sample are updated. If we have more than three GCPs, four parameters of the offsets and scale factors of image line and sample are refined first, and then six parameters of the offsets and scale factors of latitude, longitude and height are updated. The stereo images acquired by IKONOS satellite are tested using six ground points. First, the RPCs model was refined using 2 GCPs and 4 check points acquired by GPS. The results from IKONOS stereo images are reported and these show that the RMSE of check point acquired from left images and right are 1.021m and 1.447m. And then we update the RPCs model using 4 GCPs and 2 check points. The RMSE of geometric accuracy is 0.621 m in left image and 0.816m in right image.

  • PDF

Computer Vision Based Measurement, Error Analysis and Calibration (컴퓨터 시각(視覺)에 의거한 측정기술(測定技術) 및 측정오차(測定誤差)의 분석(分析)과 보정(補正))

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.65-78
    • /
    • 1992
  • When using a computer vision system for a measurement, the geometrically distorted input image usually restricts the site and size of the measuring window. A geometrically distorted image caused by the image sensing and processing hardware degrades the accuracy of the visual measurement and prohibits the arbitrary selection of the measuring scope. Therefore, an image calibration is inevitable to improve the measuring accuracy. A calibration process is usually done via four steps such as measurement, modeling, parameter estimation, and compensation. In this paper, the efficient error calibration technique of a geometrically distorted input image was developed using a neural network. After calibrating a unit pixel, the distorted image was compensated by training CMLAN(Cerebellar Model Linear Associator Network) without modeling the behavior of any system element. The input/output training pairs for the network was obtained by processing the image of the devised sampled pattern. The generalization property of the network successfully compensates the distortion errors of the untrained arbitrary pixel points on the image space. The error convergence of the trained network with respect to the network control parameters were also presented. The compensated image through the network was then post processed using a simple DDA(Digital Differential Analyzer) to avoid the pixel disconnectivity. The compensation effect was verified using known sized geometric primitives. A way to extract directly a real scaled geometric quantity of the object from the 8-directional chain coding was also devised and coded. Since the developed calibration algorithm does not require any knowledge of modeling system elements and estimating parameters, it can be applied simply to any image processing system. Furthermore, it efficiently enhances the measurement accuracy and allows the arbitrary sizing and locating of the measuring window. The applied and developed algorithms were coded as a menu driven way using MS-C language Ver. 6.0, PC VISION PLUS library functions, and VGA graphic functions.

  • PDF

Assessment on the Applicability of a Handheld LiDAR for Measuring the Geometric Structures of Forest Trees (산림지역 수목의 기하학적 구조 측정을 위한 휴대용 라이다 장비의 활용성 평가)

  • CHOI, Seung-Woon;KIM, Tae-Geun;KIM, Jong-Pil;KIM, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.2
    • /
    • pp.48-58
    • /
    • 2022
  • This study tried to assess the applicability of a hand-held LiDAR for measuring the geometric structures of forest trees including diameters at a breast height(DBH) and tree height(H). A traditional method using tapelines was conducted to analyze the accuracy of the LiDAR instrument in the Taebaeksan national park in South Korea. Four statistical indices which are bias, root mean square error, mean absolute error, and correlation coefficient were employed to compare the measurements by the LiDAR instrument and traditional method. The DBHs from the LiDAR were very similar to those from the traditional method. And it indicated that the LiDAR is sufficient to be a alternative of a traditional method. However, there was a limitation in assessing the accuracy of LiDAR for measuring tree height by comparing the measurements by observer's eyes since they included different error sources. Further study is needed to assess the accuracy of LiDAR instrument for tree height through more reliable measurements.

Improving HSPF Model's Hydraulic Accuracy with FTABLES Based on Surveyed Cross Sections (실측 하천 단면자료를 이용한 HSPF 유역모델의 수리정확도 개선)

  • Shin, Chang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.582-588
    • /
    • 2016
  • The hydrological simulation program FORTRAN (HSPF) is a comprehensive watershed model that employs the hydraulic function table (FTABLE) (depth-area-volume-flow relationship) to represent the geometric and hydraulic properties of water bodies. The hydraulic representation of the HSPF model mainly depends on the accuracy of the FTABLES. These hydraulic representations determine the response time of water quality state variables and also control the scour, deposition, and transport of sediments in the water body. In general, FTABLES are automatically generated based on reach information such as mean depth, mean width, length, and slope along with a set of standard assumptions about the geometry and hydraulics of the channel, so these FTABLES are unable to accurately describe the geometry and hydraulic behavior of rivers and reservoirs. In order to compensate the weakness of HSPF for hydraulic modeling, we generated alternate method to improve the accuracy of FTABLES for rivers, using the surveyed cross sections and rating curves. The alternative method is based on the hydraulics simulated by HEC-RAS using the surveyed cross sections and rating curves, and it could significantly improve the accuracy of FTABLES. Although the alternate FTABLE greatly improved the hydraulic accuracy of the HSPF model, it had little effect on the hydrological simulation.

RANSAC-based Or thogonal Vanishing Point Estimation in the Equirectangular Images

  • Oh, Seon Ho;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1430-1441
    • /
    • 2012
  • In this paper, we present an algorithm that quickly and effectively estimates orthogonal vanishing points in equirectangular images of urban environment. Our algorithm is based on the RANSAC (RANdom SAmple Consensus) algorithm and on the characteristics of the line segment in the spherical panorama image of the $360^{\circ}$ longitude and $180^{\circ}$ latitude field of view. These characteristics can be used to reduce the geometric ambiguity in the line segment classification as well as to improve the robustness of vanishing point estimation. The proposed algorithm is validated experimentally on a wide set of images. The results show that our algorithm provides excellent levels of accuracy for the vanishing point estimation as well as line segment classification.

Effects of geometric parameters on in-plane vibrations of two-stepped circular beams

  • Tufekci, Ekrem;Yigit, Oznur Ozdemirci
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.131-152
    • /
    • 2012
  • In-plane free vibrations of circular beams with stepped cross-sections are investigated by using the exact analytical solution. The axial extension, transverse shear deformation and rotatory inertia effects are taken into account. The stepped arch is divided into a number of arches with constant cross-sections. The exact solution of the governing equations is obtained by the initial value method. Several examples of arches with different step ratios, different locations of the steps, boundary conditions, opening angles and slenderness ratios for the first few modes are presented to illustrate the validity and accuracy of the method. The effects of the geometric parameters on the natural frequencies are investigated in details. Several examples in the literature are solved and the results are given in tables. The agreement of the results is good for all examples considered. The mode transition phenomenon is also observed for the stepped arches. Some examples are solved also numerically by using the commercial finite element program ANSYS.

THE COMPUTATION OF UNSTEADY FLOWS AROUND THREE DIMENSIONAL WINGS ON DYNAMICALLY DEFORMING MESH (변형격자계를 이용한 3차원 날개 주변의 비정상 유동 해석)

  • Yoo, Il-Yong;Lee, Seung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.34-37
    • /
    • 2009
  • Deforming mesh should be used when bodies are deforming or moving relative to each other due to the presence of aerodynamic forces and moments. Also, the flow solver for such a flow problem should satisfy the geometric conservation law to ensure the accuracy of the solutions. In this paper, a RANS(Reynolds Averaged Navier-Stokes) solver including automatic mesh capability using TFI(Transfinite Interpolation) method and GCL is developed and applied to flows induced by oscillating wings with given frequencies. The computations are performed both on deforming meshes and on rigid meshes. The computational results are compared with experimental data, which shows a good agreement.

  • PDF

THE COMPUTATION OF UNSTEADY FLOWS AROUND THREE DIMENSIONAL WINGS ON DYNAMICALLY DEFORMING MESH (변형격자계를 이용한 3차원 날개 주변의 비정상 유동 해석)

  • Yoo, Il-Yong;Lee, Byung-Kwon;Lee, Seung-Soo
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 2010
  • Deforming mesh should be used when bodies are deforming or moving relative to each other due to the presence of aerodynamic forces and moments. Also, the flow solver for such a flow problem should satisfy the geometric conservation law to ensure the accuracy of the solutions. In this paper, a RANS(Reynolds Averaged Navier-Stokes) solver including automatic mesh capability using TFI(Transfinite Interpolation) method and GCL is developed and applied to flows induced by oscillating wings with given frequencies. The computations are performed both on deforming meshes and on rigid meshes. The computational results are compared with experimental data, which shows a good agreement.

A geometric analysis of range measurement error (거리 영상 측정 오차의 기하학적 분석)

  • 윤강식;이병욱;박래홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1259-1265
    • /
    • 1997
  • We investigate depth measurement error of a range finder based on triangulation method. Geometric analysis resulted in intuitive understanding of the error sensitivity. We show that the depth error is propostional to the distance between the object andthe camera. The measurement value has the highest accuracy when the line connecting the focal point of the camera and the object is perpendicular to the line joining the object and the light source of herange finder. Also we analyze the error using a perturbation method and verify that the results are identical through an experiment.

  • PDF

Planar Error Sensitivity Analysis in a CNC Turning Cen (2차원 CNC 선반에서 평면오차 민감도 분석)

  • 여규환;이진현;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1017-1021
    • /
    • 1995
  • Geometric and thermal errors are responsible for major components of the errors of a computer numerically controlled turning center. The planar error of a CNC turning center are comprised of 11 geometric and thermal error components. The error synthesis model is formulated by homogeneous coordinate transformation method and expresses the effect of such error components on the planar error of a CNC turning center. In this paper, the sensitivity analysis of the model on the noises through sensing and the change of temperature is addressed. The sensitivity analysis show that the error systhesis model is robust on the noses and z planar error is much affected by the change of temperatures.

  • PDF