Browse > Article
http://dx.doi.org/10.11108/kagis.2022.25.2.048

Assessment on the Applicability of a Handheld LiDAR for Measuring the Geometric Structures of Forest Trees  

CHOI, Seung-Woon (Korea National Park Research Institute)
KIM, Tae-Geun (Korea National Park Research Institute)
KIM, Jong-Pil (Korea National Park Research Institute)
KIM, Sung-Jae (Shin-Woo ICT Co.)
Publication Information
Journal of the Korean Association of Geographic Information Studies / v.25, no.2, 2022 , pp. 48-58 More about this Journal
Abstract
This study tried to assess the applicability of a hand-held LiDAR for measuring the geometric structures of forest trees including diameters at a breast height(DBH) and tree height(H). A traditional method using tapelines was conducted to analyze the accuracy of the LiDAR instrument in the Taebaeksan national park in South Korea. Four statistical indices which are bias, root mean square error, mean absolute error, and correlation coefficient were employed to compare the measurements by the LiDAR instrument and traditional method. The DBHs from the LiDAR were very similar to those from the traditional method. And it indicated that the LiDAR is sufficient to be a alternative of a traditional method. However, there was a limitation in assessing the accuracy of LiDAR for measuring tree height by comparing the measurements by observer's eyes since they included different error sources. Further study is needed to assess the accuracy of LiDAR instrument for tree height through more reliable measurements.
Keywords
National Park; Forest; Diameter at Breast Height; Tree Height; LiDAR;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bitelli, G., M. Dubbini and A. Zanutta. 2004. Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. Proceedings of XXth ISPRS Congress Commission V. pp.246-251.
2 Hopkinson, C., L. Chasmer, C. Young-Pow and P. Treitz. 2004. Assessing forest metrics with a gound-based scanning LiDAR. Canadian Journal of Remote Sensing 34:573-583.
3 Kankare, V., M. Holopainen, M. Vastaranta, E. Puttonen, X. Yu, J. Hyyppa, M. Vaaja, H. Hyyppa and P. Alho. 2013. Individual tree biomass estimation using terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing 75:64-75.   DOI
4 Liang, X., V. Kankare, J. Hyyppa, Y. Wang, A. Kukko, H. Haggren, X. Yu, H. Kaartinen, A. Jaakkola, F. Guan, M. Holopainen and M. Vastaranta. 2016. Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing 115:63-77.   DOI
5 Proudman, A., M. Ramezani and M. Fallon. 2021. Online estimation of diameter at breast height(DBH) of forest trees using a handheld LiDAR. Proceedings of 2021 European Conference on Mobile Robots(ECMR).
6 Bauwens, S., H. Bartholomeus, K. Calders and P. Lejeune. 2016. Forest inventory with terrestrial LiDAR: A comparison of static and hand-held mobile laser scanning. Forests 7(6):127.   DOI
7 Maas, H.G., A. Bienert, S. Scheller and E. Keane. 2008. Automatic forest inventory parameter determination from terrestrial laser scanner data. International Journal of Remote Sensing 29:1579-1593.   DOI
8 Farr, T. G. and M. Kobrick. 2000. Shuttle Radar Topography Mission produces a wealth of data. Eos, Transanctions American Geophysical Union 81(48):583-585.   DOI
9 Balenovic, I., X. Liang, L. Jurjevic, J. Hyyppa, A. Seletkovic and A. Kukko. 2021. Hand-held personal laser scanning - Current status and perspectives for forest inventory application. Croatian Journal of Forest Engineering 42:165-183.   DOI
10 Donager, J. J., T. T. Sankey, J. B. Sankey, A. E. Sanchez Meador, A. J. Springer and J. D. Bailey. 2018. Examining forest structure with terrestrial lidar: Suggestions and novel techniques based on comparisons between scanners and forest treatments. Earth and Space Science 5:753-776.   DOI
11 Hyyppa, E., X. Yu, H. Kaartinen, T. Hakala, A. Kukko, M. Vastaranta, J. Hyyppa. 2020. Comparison of backpack, handheld, under-canopy UAV, and above-canopy UAV laser scanning for field reference data collection in boreal forests. Remote Sensing 12(20):3327.   DOI
12 Kang, D.B., J.C. Huh and K.N. Ko. 2017. Analysis of factors influencing the measurement error of ground-based LiDAR. Journal of the Korean Solar Energy Society 37(6):25-37.   DOI
13 Karagianni, A. 2017. Terrestrial Laser Scanning in Building Documentation. Civil Engineering and Architecture 5(6):215-221.   DOI
14 Pu, S. 2008. Generating building outlines from terrestrial laser scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 37(B5): 451-456.
15 Stal, C., J. Verbeurgt, L. De Sloover and A. De Wulf. 2021. Assessment of handheld mobile terrestrial laser scanning for estimating tree parameters. Journal of Forest Research 32:1503-1513.   DOI
16 Van Leeuwen, M. and M. Nieuwenhuis. 2010. Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research 129:749-770.   DOI
17 Zhang, K. and H. C. Frey. 2006. Road grade estimation for on-road vehicle emissions modeling using light detection and ranging data. Journal of the Air & Waste Management Association 56(6):777-788.   DOI
18 Ko, C.U., J.S. Kim, D.G. Kim and J.T. Kang. 2021. Analysis of optimal pathways for terrestrial LiDAR scanning the establishment of digital inventory of forest resources. Korean Journal of Remote Sensing 37(2):245-256.   DOI
19 Lim, K., P. Treitz, M. Wulder, B. St-Onge and M. Flood. 2003. LiDAR remote sensing of forest structure. Progress in Physical Geography 27:88-106.   DOI
20 Seidel, D., S. Fleck and C. Leuschner. 2012. Analyzing forest canopies with ground-based laser scanning: A comparison with hemispherical photography. Agricultural and Forest Meteorology 154:1-8.   DOI
21 Teo, T.A. and C.M. Chiu. 2015. Pole-like road object detection from mobile lidar system using a coarse-to-fine approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(10):4805-4818.   DOI
22 Valenca, J. I. Puente, E. Julio, H. Gonzalez-Jorge and P. Arias-Sanchez. 2017. Assessment of cracks on concrete bridges using image processing supported by laser scanning survey. Construction and Building Materials 146:668-678.   DOI
23 Vastaranta, M., T. Melkas, M. Holopainen, H. Kaartinen, J. Hyyppa, H. Hyyppa. 2009. Laser-based field measurements in tree-level forest data acquisition. Photogrammetric Journal of Finland 21:51-61.
24 Xie, Y., J. Zhang, X. Chen, S. Pang, H. Zeng and Z. Shen. 2020. Accuracy assessment and error analysis for diameter at breast height measurement of trees obtained using a novel backpack LiDAR system. Forest Ecosystems 7:33-43.   DOI