• 제목/요약/키워드: Geometric Representation

검색결과 205건 처리시간 0.029초

NURBS를 이용한 S형 천음속 흡입관 최적 설계 (OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS)

  • 이병준;김종암
    • 한국전산유체공학회지
    • /
    • 제11권1호
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

R-function을 이용한 형상의 음함수 모델링 및 해석 (Geometric Implicit Function Modeling and Analysis Using R-functions)

  • 신헌주;신동우;김태완
    • 한국CDE학회논문집
    • /
    • 제12권3호
    • /
    • pp.220-232
    • /
    • 2007
  • Current geometric modeling and analysis are commonly based on B-Rep modeling and a finite elements method respectively. Furthermore, it is difficult to represent an object whose material property is heterogeneous using the B-Rep method because the B-Rep is basically used for homogeneous models. In addition, meshes are required to analyze a property of a model when the finite elements method is applied. However, the process of generating meshes from B-Rep is cumbersome and sometimes difficult especially when the model is deformed as time goes by because the topology of deforming meshes are changed. To overcome those problems in modeling and analysis including homogeneous and heterogeneous materials, we suggest a unified modeling and analysis method based on implicit representation of the model using R-function which is suggested by Rvachev. For implicit modeling of an object a distance field is approximated and blended for a complex object. Using the implicit function mesh-free analysis is possible where meshes are not necessary. Generally mesh-free analysis requires heavy computational cost compared to a finite elements method. To improve the computing time of function evaluation, we utilize GPU programming. Finally, we give an example of a simple pipe design problem and show modeling and analysis process using our unified modeling and analysis method.

Predictive model for wave-induced currents and 3D beach evolution based on FAVOR Method

  • Kuroiwa, Masamitsu;Abualtayef, Mazen;Takada, Tetsushi;Sief, Ahmed Khaled;Matsubara, Yuehi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권2호
    • /
    • pp.68-74
    • /
    • 2010
  • The development of a numerical model using the fractional area/volume obstacle representation (FAVOR) method for predicting a nearshore current field bounded by complicated geometric shapes, and a three-dimensional (3D) beach evolution was described in this article. The 3D model was first tested against three cases to simulate the nearshore current fields around coastal structures, a river mouth, and a large scale cusp bathymetry. Then, the morphodynamic model tests, which are adopting the nearshore current model, were applied for the computations of beach evolution around a detached breakwater and two groins. It was confirmed that the presented model associated with the FAVOR method was useful to predict the nearshore current field in the vicinity of the complicated geometric shapes. Finally, the model was applied to a tombolo formation in a field site of Kunnui fishery port, which is located in Hokkaido, Japan.

구간값 모호집합 사이의 유사척도 (Similarity Measure Between Interval-valued Vague Sets)

  • 조상엽
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.603-608
    • /
    • 2009
  • 본 논문에서는 구간값 모호집합 사이의 유사척도를 제안한다. 구간값 모호집합에서는 모호집합의 상한과 하한을 각각 구간값 퍼지집합의 구간으로 표현한다. 제안한 유사척도는 구간값 모호집합 사이의 유사척도를 평가하기 위해 기하학적 거리와 구간값 모호집합 사이의 중심점 개념을 결합한다. 우리는 제안한 유사척도에 대한 세 가지 속성도 증명한다. 제안한 방법은 구간값 모호집합 사이의 유사정도를 측정하는 유용한 방법을 제공한다.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제50권6호
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

이슬람 예술에 표현된 패턴 특징과 텍스타일디자인에의 활용 (On the Application of the Islamic Patterns to the Textile Design)

  • 김희선
    • 한국의상디자인학회지
    • /
    • 제6권1호
    • /
    • pp.13-24
    • /
    • 2004
  • This study was analyzed three basic patterns of the Islamic arts. These are natural flora, geometrical and calligraphy pattern. Islamic belief in Aniconism, doctrine of unity and worship of arabic language demanded delicate, decorative, and abstract patterns instead of patterns of real image. Natural flora pattern was classified into arabesque and various flower patterns. Muhammad commands that "The artist who fashions a representation of living things is competitor of God and therefore destined to eternal damnation, so if you want to represent living things, you should only depict flowers and trees". Then the natural flora patterns developed into main Islamic pattern. Geometric pattern was composed of geometrical elements like, circle, trigon, square, rectangle, pentagon, hexagon, octagon or other polygons, stars or motifs with straight or curved lines. Circle symbolized ′celestial′ sphere and crystal of the lower octagon symbolized ′earthly existence′. Therefore if the circle join with the octagons, it means fusion of celestial and earthly existence. Another important influence on the Islamic art was the calligraphy pattern, the writing of Arabic language. The major language of calligraphy pattern was Arabic script and often Persian script. Calligraphy pattern was composed of Kufic and Cursive script. The cursive script was developed various forms. The Islamic tenet prohibit depiction of sacred images, the sacred Arabic calligraphy such as ′Alla′ or ′Mohammad′ was substituted of them. And the content of calligraphy pattern was used with Quranic phrases. The aesthetics of Islamic patterns analyzed aesthetic of ′rhythmic lines′, aesthetic of ′unity in multiplicity′, aesthetic of tessellation and aesthetic of harmony. On the textiles of the Islamic culture, the arabesque, floral, geometric and calligraphy patterns were frequently used.

  • PDF

유영국의 초기 추상, 1937~1949 (Early Abstract Paintings of Yoo Youngkuk)

  • 정영목
    • 미술이론과 현장
    • /
    • 제3호
    • /
    • pp.173-192
    • /
    • 2005
  • Yoo Youngkuk started his career as an artist when he entered Bunkagakuin of Tokyo in 1935 he actively participated in the Japanese art scene as a young Korean artist until 1943. In his earliest works, Rhapsody and Work B, Surrealist and abstract influences are manifested as these were prevalent in Japan at the time. With the exception of Rhapsody and Work B, all works available that were executed between 1937 and 1940 are abstract, which points to the fact that Yoo intended abstraction from the beginning. Surviving works in relief suggest his early style was founded on the abstractions similar to Russian Avant-Garde, Neo-plasticism and Bauhaus simplicity. His early abstractions were not the ideational images derived in the process of the abstraction of the representational image, but they arose from the constructive attitude in composing the already stylized non-representational geometries. It is worth noting that his early emphasis was on the pure and absolute geometric abstraction, rather than the images motivated from the figurative representation. Yoo differentiates himself from Kim Whan Ki in the following aspects: one, he eliminated the subject matter i.e. human figures and the nature; two, he maintained the constructivist attitude in creating a strict and absolute abstraction; three, he experimented with different styles without combining them. He manifests direct influences from the prevalent Western art influences, such as Futurism and Russian Avant-Garde, unlike Kim who vaguely references. In both paintings and reliefs, Yoo's attempt in the realization of the pictorial depth and space seems cerebral and conceptualized compared with the other artists of the time who resolved abstraction via the constructive dimension. Uemura, a contemporary critic to the geometric abstractions in Japan, disapproves the stylistic bent in the adaptation of the abstract painting without the comprehension of its spiritual movement. As witnessed in other criticisms as well, contemporary Japanese critics' interest lie mainly in the superficial observation such as the presence of representational elements, composition and use of color. Such formal and superficial understanding of the geometric abstraction resulted in

  • PDF

지역적 불변특징 기반의 3차원 환경인식 및 모델링 (Recognition and Modeling of 3D Environment based on Local Invariant Features)

  • 장대식
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.31-39
    • /
    • 2006
  • 본 논문에서는 지능로봇. 지능형자동차. 지능형빌딩 등에 다양하게 활용될 수 있는 3차원 환경과 여기에 포함된 물체의 실시간 인식을 위한 새로운 접근 방법을 제안한다. 본 논문에서는 먼저 사람이 환경을 인식하고 상호작용하는 데 사용하는 3가지 기본 원칙을 설정하고, 이 기본 원칙들을 이용하여 실시간 3차원 환경 및 물체 인식을 위한 통합된 방법을 제시한다. 이들 3가지 기본 원칙은 다음과 같다. 첫째, 전역 적인 평면 특징들을 인식함으로써 작업환경의 기하학적 구조에 대한 개략적 특성화를 고속으로 진행한다. 둘째, 작업환경 속에서 기존에 알려진 물체를 먼저 빠르게 인식하고 이를 데이터베이스 내에 저장되어 있는 물체의 모델로 교체한다. 셋째, 다중 해상도 Octree 표현 방법을 이용하여 기타 영역을 주어진 작업의 필요에 따라 적응적으로 실시간 모델링 한다. 본 논문에서는 3차원 SIFT로 언급되는 3차원 좌표를 가지는 SIFT특징들을 3차원 좌표정보와 함께 확장하여 사용함으로서 전역적 평면 특징의 빠른 추출, 고속의 물체 인식, 빠른 장면 정합 등의 기능에 활용하고 이와 동시에 스테레오 카메라로부터 입력되는 3차원 좌표의 잡음과 불완전성을 극복한다.

  • PDF

우리나라에서 계측된 중규모 지진 지반운동의 수평 양방향 응답 특성 분석 (A Study on the Characteristics of Bi-directional Responses by Ground Motions of Moderate Magnitude Earthquakes Recorded in Korea)

  • 김정한;김재관;허태민;이진호
    • 한국지진공학회논문집
    • /
    • 제23권5호
    • /
    • pp.269-277
    • /
    • 2019
  • In a seismic design, a structural demand by an earthquake load is determined by design response spectra. The ground motion is a three-dimensional movement; therefore, the design response spectra in each direction need to be assigned. However, in most design codes, an identical design response spectrum is used in two horizontal directions. Unlike these design criteria, a realistic seismic input motion should be applied for a seismic evaluation of structures. In this study, the definition of horizontal spectral acceleration representing the two-horizontal spectral acceleration is reviewed. Based on these methodologies, the horizontal responses of observed ground motions are calculated. The data used in the analysis are recorded accelerograms at the stations near the epicenters of recent earthquakes which are the 2007 Odeasan earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Geometric mean-based horizontal response spectra and maximum directional response spectrum are evaluated and their differences are compared over the period range. Statistical representation of the relations between geometric mean and maximum directional spectral acceleration for horizontal direction and spectral acceleration for vertical direction are also evaluated. Finally, discussions and suggestions to consider these different two horizontal directional spectral accelerations in the seismic performance evaluation are presented.

THE REPRESENTATION OF THE GOLDEN RATIO BY THE CONTINUED FRACTION

  • Kim, Seung Soo;Ko, Mi Yeon;Lee, Yong Hun
    • 호남수학학술지
    • /
    • 제36권1호
    • /
    • pp.103-112
    • /
    • 2014
  • There are several theories to say that 'Mathematics is beautiful', but the typical one of them is a theory about the golden ratio. Often the golden ratio apt to be considered only as the geometric shapes or the simple number of ratio used in buildings and arts. However in this paper, we studied to consider the mathematical theories which are contained in their inside. In particular, we investigate the various expressions of the continued fraction which are represented by the golden ratio.