• Title/Summary/Keyword: Geometric Representation

Search Result 206, Processing Time 0.02 seconds

Dense Neural Network Graph-based Point Cloud classification (밀집한 신경망 그래프 기반점운의 분류)

  • El Khazari, Ahmed;lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.498-500
    • /
    • 2019
  • Point cloud is a flexible set of points that can provide a scalable geometric representation which can be applied in different computer graphic task. We propose a method based on EdgeConv and densely connected layers to aggregate the features for better classification. Our proposed approach shows significant performance improvement compared to the state-of-the-art deep neural network-based approaches.

An Object Oriented Spatial Data Model Based on Geometric attributes and the Role of Spatial Relationships in Geo-objects and Geo-fields (지리-객체와 지리-필드에서 기하 속성과 공간관계 역할에 기반한 객체 지향 공간 데이터 모델)

  • Lee, Hong-Ro
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.516-572
    • /
    • 2001
  • Geographic Information System(CIS) deal with data which can potentially be useful for a wide range of applications. The information needed by each application can be vary, specially in resolution, detail level, application view, and representation style, as defined in the modeling phase of the geographic database design. To be able to deal with such diverse needs, GIS must offer features that allow multiple representation for each geographic entity of phenomenon. This paper addresses on the problem of formal definition of the objects and their relationships on the geographical information systems. The geographical data is divided into two main classes : geo-objects and geo-fields, which describe discrete and continuous representations of spatial reality. I studied the attributes and the relationship roles over geo-object and nongeo-object. Therefore, this paper contributed on the efficient design of geographical class hierarchy schema by means of formalizing attribute-domains of classes.

  • PDF

Development of Framework of Linkage between Geometric Modeling and Finite Element Analysis for Shape Optimization of Shell Surfaces (쉘 곡면 형상의 최적 설계를 위한 유한요소해석과 기하학적 모델링의 연동)

  • Kim,Hyeon-Cheol;No,Hui-Yeol;Jo,Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.27-35
    • /
    • 2003
  • Geometric modeling tool and analysis tool of shell surface have been developed in the different environments and purposes. Thus they cannot be naturally fitted to each other for the integrated design and analysis. In the present study, an integrated framework of geometric modeling, analysis, and design optimization is proposed. It is based on the common representation of B-spline surface patch. In the analysis module, a geometrically-exact shell finite element is implemented. In shape optimization module, control points of the surface are selected as design variables. For the computation of shape sensitivities, semi-analytical method is used. Sequential linear programming(SLP) is adopted for the shape optimization of surfaces. The developed integrated framework should serve as a powerful tool for the geometric modeling, analysis, and shape design of surfaces.

Nonlinear dynamic performance of long-span cable-stayed bridge under traffic and wind

  • Han, Wanshui;Ma, Lin;Cai, C.S.;Chen, Suren;Wu, Jun
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.249-274
    • /
    • 2015
  • Long-span cable-stayed bridges exhibit some features which are more critical than typical long span bridges such as geometric and aerodynamic nonlinearities, higher probability of the presence of multiple vehicles on the bridge, and more significant influence of wind loads acting on the ultra high pylon and super long cables. A three-dimensional nonlinear fully-coupled analytical model is developed in this study to improve the dynamic performance prediction of long cable-stayed bridges under combined traffic and wind loads. The modified spectral representation method is introduced to simulate the fluctuating wind field of all the components of the whole bridge simultaneously with high accuracy and efficiency. Then, the aerostatic and aerodynamic wind forces acting on the whole bridge including the bridge deck, pylon, cables and even piers are all derived. The cellular automation method is applied to simulate the stochastic traffic flow which can reflect the real traffic properties on the long span bridge such as lane changing, acceleration, or deceleration. The dynamic interaction between vehicles and the bridge depends on both the geometrical and mechanical relationships between the wheels of vehicles and the contact points on the bridge deck. Nonlinear properties such as geometric nonlinearity and aerodynamic nonlinearity are fully considered. The equations of motion of the coupled wind-traffic-bridge system are derived and solved with a nonlinear separate iteration method which can considerably improve the calculation efficiency. A long cable-stayed bridge, Sutong Bridge across the Yangze River in China, is selected as a numerical example to demonstrate the dynamic interaction of the coupled system. The influences of the whole bridge wind field as well as the geometric and aerodynamic nonlinearities on the responses of the wind-traffic-bridge system are discussed.

Typology as Form Generating Process in Contemporary Architecture (현대건축 형태생성 과정으로써의 유형학적 특성)

  • Kim, Jong-Myeong;Kim, Dong-Jin
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.5
    • /
    • pp.3-13
    • /
    • 2014
  • Typology in Contemporary Architecture wants to escape from the classical typology that has the problems about specific program of structuralism, typical repeatation of customary form. As visible and non-visible things are appeared in contemporary architecture through the analysis of the inner system involving development process of changing itself, typology of contemporary is utilized at a tool of form generation in the process of architect. And it notes that the structural properties of the building system. The form of contemporary architecture has the new connecting strucure not reduced to existing ones. It carries out generative access as a device in order to solve the complexity of society. From this perspective, we analyze the process of projects of contemporary architects that can be typological strategy not representation of post geometric form but a tool of form generation in architectural process. As a result, we can find four characteristics of typology as a tool of form generation; 'interference and mix of program', 'continous slabs', 'rearrangement through relationship setting', 'transformation of multi-layers'. These are expanding to the process that reflect history and context or infer from morphology. Therefore, typology as architectural process of form generation overcomes morphological typology of classical typology and suggests that the different architectural approach having potential possibility.

THE CURVATURE TENSORS IN THE EINSTEIN'S $^*g$-UNIFIED FIELD THEORY II. THE CONTRACTED SE-CURVATURE TENSORS OF $^*g-SEX_n$

  • Chung, Kyung-Tae;Chung, Phil-Ung;Hwang, In-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.641-652
    • /
    • 1998
  • Chung and et al. ([2].1991) introduced a new concept of a manifold, denoted by $^{\ast}g-SEX_n$, in Einstein's n-dimensional $^{\ast}g$-unified field theory. The manifold $^{\ast}g-SEX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^{\ast}g^{\lambda \nu}$ through the SE-connection which is both Einstein and semi-symmetric. In this paper, they proved a necessary and sufficient condition for the unique existence of SE-connection and sufficient condition for the unique existence of SE-connection and presented a beautiful and surveyable tensorial representation of the SE-connection in terms of the tensor $^{\ast}g^{\lambda \nu}$. Recently, Chung and et al.([3],1998) obtained a concise tensorial representation of SE-curvature tensor defined by the SE-connection of $^{\ast}g-SEX_n$ and proved deveral identities involving it. This paper is a direct continuations of [3]. In this paper we derive surveyable tensorial representations of constracted curvature tensors of $^{\ast}g-SEX_n$ and prove several generalized identities involving them. In particular, the first variation of the generalized Bianchi's identity in $^{\ast}g-SEX_n$, proved in theorem (2.10a), has a great deal of useful physical applications.

  • PDF

Essential Computational Tools for High-Fidelity Aerodynamic Simulation and Design (고 정밀 항공우주 유동해석 및 설계를 위한 공력계산 툴)

  • Kim, Chong-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.33-36
    • /
    • 2006
  • As the computing environment is rapidly improved, the interests of CFD are gradually focused on large-scale computation over complex geometry. Keeping pace with the trend, essential computational tools to obtain solutions of complex aerospace flow analysis and design problems are examined. An accurate and efficient flow analysis and design codes for large-scale aerospace problem are presented in this work. With regard to original numerical schemes for flow analysis, high-fidelity flux schemes such as RoeM, AUSMPW+ and higher order interpolation schemes such as MLP (Multi-dimensional Limiting Process) are presented. Concerning the grid representation method, a general-purpose basis code which can handle multi-block system and overset grid system simultaneously is constructed. In respect to design optimization, the importance of turbulent sensitivity is investigated. And design tools to predict highly turbulent flows and its sensitivity accurately by fully differentiating turbulent transport equations are presented. Especially, a new sensitivity analysis treatment and geometric representation method to resolve the basic flow characteristics are presented. Exploiting these tools, the capability of the proposed approach to handle complex aerospace simulation and design problems is tested by computing several flow analysis and design problems.

  • PDF

A Low-Cost Lidar Sensor based Glass Feature Extraction Method for an Accurate Map Representation using Statistical Moments (통계적 모멘트를 이용한 정확한 환경 지도 표현을 위한 저가 라이다 센서 기반 유리 특징점 추출 기법)

  • An, Ye Chan;Lee, Seung Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.103-111
    • /
    • 2021
  • This study addresses a low-cost lidar sensor-based glass feature extraction method for an accurate map representation using statistical moments, i.e. the mean and variance. Since the low-cost lidar sensor produces range-only data without intensity and multi-echo data, there are some difficulties in detecting glass-like objects. In this study, a principle that an incidence angle of a ray emitted from the lidar with respect to a glass surface is close to zero degrees is concerned for glass detection. Besides, all sensor data are preprocessed and clustered, which is represented using statistical moments as glass feature candidates. Glass features are selected among the candidates according to several conditions based on the principle and geometric relation in the global coordinate system. The accumulated glass features are classified according to the distance, which is lastly represented on the map. Several experiments were conducted in glass environments. The results showed that the proposed method accurately extracted and represented glass windows using proper parameters. The parameters were empirically designed and carefully analyzed. In future work, we will implement and perform the conventional SLAM algorithms combined with our glass feature extraction method in glass environments.

A Study on Students' Responses to Non-routine Problems Using Numerals or Figures (숫자 또는 도형을 사용하여 제시된 비정형적인 문제에서 학생들의 반응에 대한 연구)

  • Hwang, Sun-Wook;Shim, Sang-Kil
    • The Mathematical Education
    • /
    • v.49 no.1
    • /
    • pp.39-51
    • /
    • 2010
  • The purpose of this article is to study students' responses to non-routine problems which are presented by using solely numerals or symbolic figures. Such figures have no mathematical meaning but just symbolical meaning. Most students understand geometric figures more concrete objects than numerals because geometric figures such as circles and squares can be visualized by the manipulatives in real life. And since students need not consider (unvisible) any operational structure of numerals when they deal with (visible) figures, problems proposed using figures are considered relatively easier to them than those proposed using numerals. Under this assumption, we analyze students' problem solving processes of numeral problems and figural problems, and then find out when students' difficulties arise in the problem solving process and how they response when they feel difficulties. From this experiment, we will suggest several comments which would be considered in the development and application of both numerical and figural problems.