• Title/Summary/Keyword: Geometric Nonlinearities

Search Result 131, Processing Time 0.025 seconds

Direcy Design of Space Steel Frames Using practical Advanced Analysis (실용적인 고등해석을 이용한 공간 강뼈대구조물의 직접설계)

  • Kim, Seung Eock;Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.153-162
    • /
    • 2001
  • A direct design method of three-dimensional frames using practical advanced analysis is presented. In this method. separate member capacity checks encompassed by the code specifications are not required. because the stability of separate members and the structure as a whole can be rigorously treated in determining the maximum strength of the structures. Advanced analysis accounts for geometric and material nonlinearities. The geometric nonlinearlity is considered by the use of stability function. The material nonlinearity is accounted for using CRC tangent modulus and parabolic function. The load-displacements predicted by the proposed analysis compare well with those given by other approaches. A design example has been presented for a 22-story frame. The analysis results show that the proposed method is suitable for adoption in practice.

  • PDF

A Study on the Dynamic Behavior of Cable-Stayed Bridge Considering Geometric Nonlinearity of Cables (케이블의 기하학적 비선형성을 고려한 사장교의 동적거동에 관한 연구)

  • Park, Young Suk;Chung, Si Youn;Lee, Myong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.15-25
    • /
    • 1989
  • This paper presents the results of the numerical analysis on the behavior of cable-stayed bridge considering geometric nonlinearity of cables. Finite element method is used and geometric nonlinearities are considered on the analysis of cable-stayed bridge. The governing equilibrium equations are derived by the principle of virtual work, and modified Newton-Raphson method and Newmark-${\beta}$ method are employed in response calculations. The validity of this study is demonstrated by comparing the examples with analytical results by other method and testing results.

  • PDF

Seismic performance assessment of reinforced concrete bridge piers supported by laminated rubber bearings

  • Kim, T.H.;Kim, Y.J.;Shin, H.M.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.3
    • /
    • pp.259-278
    • /
    • 2008
  • This paper presents a nonlinear finite element procedure accounting for the effects of geometric as well as material nonlinearities for reinforced concrete bridge piers supported by laminated rubber bearings. Reinforced concrete bridge piers supported by laminated rubber bearings and carrying a cyclic load were analyzed by using a special purpose, nonlinear finite element program, RCAHEST. For reinforced concrete, the proposed robust nonlinear material model captures the salient response characteristics of the bridge piers under cyclic loading conditions and addresses with the influence of geometric nonlinearity on post-peak response of the bridge piers by transformations between local and global systems. Seismic isolator element to predict the behaviors of laminated rubber bearings is also developed. The seismic performance of reinforced concrete bridge piers supported by laminated rubber bearings is assessed analytically. The results show good correlation between the experimental findings and numerical predictions, and demonstrate the reliability and robustness of the proposed analytical model. Additionally, the studies and discussions presented in this investigation provide an insight into the key behavioral aspects of reinforced concrete bridge piers supported by laminated rubber bearings.

Nonlinear analysis of the RC structure by higher-order element with the refined plastic hinge

  • IU, C.K.
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.579-596
    • /
    • 2016
  • This paper describes a method of the refined plastic hinge approach in the framework of the higher-order element formulation that can efficaciously evaluate the limit state capacity of a whole reinforced concrete structural system using least number of element(s), whereas the traditional design of a reinforced concrete structure (i.e. AS3600; Eurocode 2) is member-based approach. Hence, in regard to the material nonlinearities, the efficient and economical cross-section analysis is provided to evaluate the element section capacity of non-uniform and arbitrary concrete section subjected to the interaction effects, which is helpful to formulate the refined plastic hinge method. In regard to the geometric nonlinearities, this paper relies on the higher-order element formulation with element load effect. Eventually, the load redistribution can be considered and make full use of the strength reserved owing to the redundancy of an indeterminate structure. And it is particularly true for the performance-based design of a structure under the extreme loads, while the uncertainty of the extreme load is great that the true behaviour of a whole structural system is important for the economical design approach, which is great superiority over the conservative optimal strength of an individual and isolated member based on traditional design (i.e. AS3600; Eurocode 2).

Behaviour and design of high-strength steel beam-to-column joints

  • Li, Dongxu;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • This paper presents a finite element model for predicting the behaviour of high-strength steel bolted beam-to-column joints under monotonic loading. The developed numerical model considers the effects of material nonlinearities and geometric nonlinearities. The accuracy of the developed model is examined by comparing the predicted results with independent experimental results. It is demonstrated that the proposed model accurately predicts the ultimate flexural resistances and moment-rotation curves for high-strength steel bolted beam-to-column joints. Mechanical performance of three joint configurations with various design details is examined. A parametric study is carried out to investigate the effects of key design parameters on the behaviour of bolted beam-to-column joints with double-extended endplates. The plastic flexural capacities of the beam-to-column joints from the experimental programme and numerical analysis are compared with the current codes of practice. It is found that the initial stiffness and plastic flexural resistance of the high-strength steel beam-to-column joints are overestimated. Proper modifications need to be conducted to ensure the current analytical method can be safely used for the bolted beam-to-column joints with high-performance materials.

Nonlinear Analysis of 3-D Steel Frames (3차원 강뼈대구조의 비선형 해석)

  • Kim, Seung Eock;Kim, Yo Suk;Choi, Se Hyu;Kim, Sung Mo;Choi, Joon Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.417-424
    • /
    • 1999
  • In this paper a nonlinear analysis of three-dimensional steel frames is developed. This analysis accounts for material and geometric nonlinearities. The material nonlinearity includes gradual yielding associated with flexural behaviors. The geometric nonlinearity includes the second-order effects associated with $P-{\delta}\;and\;P-{\Delta}$ effects. The material nonlinearity at the node is considered using the concept of P-M hinge consisting of many fibers. The geometric nonlinearity is considered by the use of stability function. The nonlinearity caused by shear and torsional interaction effects is neglected. The modified incremental displacement method is used as the solution technique. The load-displacements predicted by the proposed analysis compare well with those given by other approaches.

  • PDF

Geometric Nonlinear Analysis of Reinforced Concrete Beam-Columns (기하학적(幾何學的) 비선형성(非線形性)을 고려(考慮)한 철근(鐵筋)콘크리트 보-기둥의 해석(解析))

  • Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.147-154
    • /
    • 1984
  • A numerical procedure based on the finite element method for the analysis of reinforced concrete beam-columns under uniaxial bending is presented. Material nonlinearities such as the cracking and crushing of concrete and the yielding of reinforcing steel as well as the geometric nonlinearity which is an important factor affecting the behavior of beam-columns are considered in the analysis. This method traces the behavior of reinforced concrete beam-columns up to failure by solving incremental equilibrium equations, Numerical examples are presented to demonstrate the validity and usefulness of the present method.

  • PDF

Nonlinear dynamics and failure wind velocity analysis of urban trees

  • Ai, Xiaoqiu;Cheng, Yingyao;Peng, Yongbo
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.89-106
    • /
    • 2016
  • With an aim to assess the wind damage to urban trees in more realistic conditions, the nonlinear dynamics of structured trees subjected to strong winds with different levels is investigated in the present paper. For the logical treatment of dynamical behavior of trees, material nonlinearities of green wood associated with tree biomechanics and geometric nonlinearity of tree configuration are included. Applying simulated fluctuating wind velocity to the numerical model, the dynamical behavior of the structured tree is explored. A comparative study against the linear dynamics analysis usually involved in the previous researches is carried out. The failure wind velocity of urban trees is then defined, whereby the failure percentages of the tree components are exposed. Numerical investigations reveal that the nonlinear dynamics analysis of urban trees results in a more accurate solution of wind-induced response than the classical linear dynamics analysis, where the nonlinear effect of the tree behavior gives rise to be strengthened as increasing of the levels of wind velocity, i.e., the amplitude of 10-min mean wind velocity. The study of relationship between the failure percentage and the failure wind velocity provides a new perspective towards the vulnerability assessment of urban trees likely to fail due to wind actions, which is potential to link with the practical engineering.

Construction stage analysis of fatih sultan mehmet suspension bridge

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet Can;Sevim, Baris
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.489-505
    • /
    • 2012
  • In this study, it is aim to perform the construction stage analysis of suspension bridges using time dependent material properties. Fatih Sultan Mehmet Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element models of the bridge are modelled using SAP2000 program considering project drawing. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength variations and geometric variations are included in the analysis. Because of the fact that the bridge has steel structural system, only prestressing steel relaxation is considered as time dependent material properties. The structural behaviour of the bridge at different construction stages has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. As analyses result, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given with detail. It is seen that construction stage analysis has remarkable effect on the structural behaviour of the bridge.

Mechanical Behavior of Cable Net Structures Considering Sag Ratio (새그 비를 고려한 케이블 네트 구조물의 역학적 거동)

  • Park, Kang-Geun;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.3
    • /
    • pp.47-58
    • /
    • 2016
  • Cable network system is a flexible lightweight structure which curved cables can transmit only tensile forces. The weight of cable roof dramatically can reduce when the length becomes large. The cable network system is too flexible, most cable systems are stabilized by pretension forces. The tensile force of cable system is greatly influenced by the sag ratio and pretension forces. Determining initial sag ratio of cable roof system is essential in a design process of cable structures. Final sag ratio and pretension depends on initial installed sag and on proper handling during installation. The design shape of cable system has an affect on the sag and pretension, and must be determined using well-defined design philosophy. This paper is carried out the comparative data of the deflection and tensile forces on the geometric non-linear analysis of cable network systems according to sag ratio. The study of cable network system is provided to technical informations for the design of a large span cable roof, analytical results are compared with the results of other researchers. Structural nonlinear analysis of systems having cable elements is relatively complex than other rigid structural systems because displacements are large as a reason of flexibility, initial prestress is applied to cables in order to increase the rigidity, and then divergence of nonlinear analysis occurs rather frequently. Therefore, cable network systems do not exhibit a typical nonlinear behavior, iterative method that can handle geometric nonlinearities are necessary.